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Received 24 February 1977 

Abstract. A new three-parameter family of exact solutions of the stationary axisymmetric 
vacuum Einstein equations, which represent rotating bounded sources, are presented. This 
family contains the solutions of Kerr and Tomimatsu-Sato as special cases, and may be 
regarded as a generalisation of the latter to arbitrary continuous 6 parameter. The final 
form of the metric depends on two ordinary differential equations of the second order. 
When 6 is not an integer, these equations define unfamiliar transcendental functions for 
which rapidly converging series expansions of several types are available. When 6 is an 
integer, the solutions are polynomial or rational functions of spheroidal coordinates and 
define the discrete Tomimatsu-Sat0 series, for which those authors give the cases 6 = 
1 ,2 ,3 ,4 .  One of the two equations is solved explicitly for the case 6 = 5 and efficient 
algorithms are presented which make it possible to perform such calculations by hand. The 
metric and Ernst potentials assume simple functional forms on the symmetry axis. Actually, 
this three-parameter family of asymptotically flat solutions is shown to be contained in a 
family of unphysical solutions with six non-trivial parameters, one of which is the familiar 
NUT parameter. 

1. Introduction 

In Einstein’s general theory of relativity, exact solutions of the field equations repre- 
senting the vacuum exterior of bounded gravitational sources are still exceedingly 
scarce. The cases of static axisymmetry and non-static spherical symmetry have been 
completely solved (Weyl 1917, Birkhoff 1923, respectively). The next simplest vacuum 
gravitational fields are those with stationary axisymmetry. These are very important in 
relativistic astrophysics, being needed, for example, for neutron stars, quasars and 
dense star clusters, where strong fields and rapid rotation are expected. But in this case 
the field equations, though deceptively simple in form, are unfortunately very difficult 
to solve. Though large classes of unphysical solutions are known, the list of known 
astrophysically admissible solutions numbers exactly four, each containing two arbit- 
rary parameters, m and q, representing the mass (m) and angular momentum ( m 2 q )  of 
the source. 

The first of these is the celebrated solution of Kerr (1963). (Other derivations: 
Newman and Janis (1965), Carter (1968a), Ernst (1968); for global properties, see 
Carter (1968b).) The importance of this solution as the vacuum exterior of a rotating 
star is far overshadowed by its interpretation as a black hole (see, e.g., Hawking and 
Ellis 1973). The next was found by Tomimatsu and Sat0 (1972, to be referred to as TS 
1972) and was followed by two more (TS 1973). The TS solutions were obtained by 
using the Ernst complex potential formalism (Ernst 1968, 1974), in prolate spheroidal 
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coordinates, and a computer to search for rational function solutions aided by a few 
rules of computation. The Kerr and TS solutions are labelled by a discrete parameter, S, 
taking values S = 1, 2 ,  3 , 4 ,  which measures the mass quadrupole, Q, of the source 
according to 

Q = m 3 [ q 2 + p 2 ( S 2 -  1)/3S2], 

where p 2  = 1 - q 2 .  
In this paper, we shall generalise the Kerr and TS solutions to allow the parameter S 

to take any real or pure imaginary value. The final form of the metric depends on two 
independent ordinary differential equations (DE) of the second order satisfying certain 
boundary conditions. One of these is a linear Fuchsian equation with five regular 
singular points similar to LamC’s equation; the other is non-linear, but reasonably 
simple in  form. There are distinct advantages, however, in working with alternative 
third- or fourth-order DE. When S is an integer, these equations admit polynomial or 
rational function solutions which can be readily identified with the Kerr and TS solutions 
when S = 1 , 2 , 3 , 4 .  When S is not an integer, the equations define transcendental 
functions for which efficient series expansions are available. This three-parameter 
family of solutions can be expanded to a family of six non-trivial parameters by 
introducing a new parameter, h, to the two DE and by relaxing the boundary conditions. 
One of these additional parameters is the familiar NUT parameter (see 9 2). Since these 
additional solutions are unphysical, they will be only briefly outlined. 

These new gravitational solutions are not derived from first principles in this paper 
since such a derivation would make this paper prohibitively long. The full derivation is 
given in Cosgrove (1977e). These solutions (the full six-parameter family plus a few 
trivial parameters) are there shown to arise from a transformation group, also new, 
which transforms any stationary axisymmetric vacuum solution into another such 
solution whilst preserving the boundary conditions of asymptotic flatness, regular 
symmetry axis and bounded singularities. All previously known transformation groups 
create a line singularity on half or all of the symmetry axis and destroy asymptotic 
flatness (in the sense of weak asymptotic simplicity-see Hawking and Ellis 1973). (For 
examples of such groups or solutions resulting from-their application, see Papapetrou 
(1953), Ehlers (1962, 1965), Ernst (1968, 1974), Geroch (1971, 1972), Lewis (1932), 
Matzner and Misner (1967), Kinnersley (1973).) 

This paper is set out as follows. The two basic ordinary differential equations are 
written down in 9 3 and explicit formulae for the metric and Ernst potentials are given in 
9 4 .  Methods of solving the ordinary DE are postponed till § 10. In 09 5 and 6, we 
demonstrate that Einstein’s vacuum field equations are satisfied and so also is ‘rule (a)’ 
of Tomimatsu and Sat0 (1973). In 097 and 8, we prove that the solutions are 
asymptotically flat and are well behaved on the symmetry axis and very simple formulae 
are given for the metric coefficients and Ernst potentials on the symmetry axis in 0 9.  
Finally, in § 11, we give an efficient algorithm for calculating the cases when S is an 
integer and these results may be directly compared with the Kerr and TS solutions when 
S = 1, 2, 3 , 4 .  

and 4 for 
--03 < SP2 < cc and -a < 4 < 00, when viewed in canonical cylindrical coordinates, 
outside the inner regions, presumed covered by the material source of the gravitational 
field, where the analytically extended vacuum solution may be singular. However, we 
shall concentrate attention on the ranges O< S < 00, -1 < 4 < 1, though it will be clear 
how our equations may be adapted to the cases 141 > 1 and/or S finite pure imaginary. 

The metric coefficients are analytic functions of the parameters 
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The limiting cases, S = 00 and q = * l ,  will be treated in a separate paper (Cosgrove 
1977~) .  These correspond to a 'rotating Curzon' metric and a generalised 'extreme 
Kerr' metric, respectively, A further paper (Cosgrove 1977d) will present a formula- 
tion of the stationary axisymmetric gravitational field equations alternative to those of 
Einstein (as arranged by Lewis 1932) and Ernst (1968, 1974) from which the present 
family of new solutions and another similar but unphysical class arise quite naturally. 

2. Einstein's and Emst's equations 

2.1. Field equations 

Take the metric of space-time in the Weyl-Lewis-Papapetrou canonical form (Lewis 
1932): 

ds2 = e2"(dt-w d4)2-e-2u[e2y(dr2+dz2)+r2 d4'], (2.1) 

where r, 4, z are cylindrical coordinates, t is time and U, U, y are functions of r and z 
only. Einstein's vacuum field equations reduce to 

( 2 . 2 ~ )  

(2.26) 

where U, =au/ar, U, =a2u/ar2, etc. Ehlers and Kundt (1962), Ehlers (1965) and Ernst 
(1968) chose a new potential 4 according to 

+r = ( l / r )  e 4 u ~ z ,  +, = -(I/r)  e4'wr. (2.3) 

Compatibility of the two equations (2.3) is guaranteed by the second Einstein equation, 
(2.26). The field equations can be rewritten: 

( 2 . 4 ~ )  

(2.46) 

These are Ernst's equations. Ernst (1968) then chose two complex potentials, 

8 = ezu +i+, ( 2 . 5 ~ )  

6 = (1 + 8)/(1- 8),  (2.56) 

each of which satisfies a single compact and elegant field equation, but which does not 
uncouple equations (2.4) because of the appearance of the cornplex conjugates, $* and 
6". The complex Ernst potential 6 assumes a simple form for many known solutions, 
especially the Kerr solution, and has been very useful in finding new ones. However, 
surprisingly, 8 and 6 do not arise naturally in our work and the original derivation from 
first principles proceeded, of necessity, in the (U, U )  formulation. The metric coefficient 
e2' can be obtained from 

( 2 . 6 ~ )  

= r[(u, + i ~ , ) ~ + ~ e - ~ ~ ( + ,  +i+L)2], (2.66) 

y, +iyz = r(u, +iu,)2 - (1/4r) e4"(wI +iwz)2, 

compatibility being guaranteed by the field equations, (2.2) or (2.4). 
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Alternative coordinate systems will be needed. The spherical-like coordinates 
(p, e )  (not to be confused with Schwarzschild coordinates), defined by 

r = p sin 8, z = p  COS e, (2 .7 )  

will be useful in discussing the asymptotically flat outer regions. The much more 
important prolate spheroidal coordinates ( x ,  y ) aie defined by 

r = K ( X 2 - 1 ) 1 / 2 ( 1 - y 2 ) 1 / 2  Z = K X Y ,  ( 2 .8 )  

where K is a positive constant. x is a radial coordinate, y angular with range -1 s y s 1. 
Many known solutions, including the Kerr and TS solutions, take relatively simple forms 
in these coordinates for appropriate K. 

Remarkably, the system of coordinates most strongly preferred for our solutions is 
not prolate spheroidal but a rather unusual system: 

= Y / X ,  7) = ( x 2 - 1 ) / ( 1 - y 2 ) .  (2 .9 )  

These coordinates, which are orthogonal and depend on K ,  are rather poorly suited to 
the asymptotically flat outer regions and break down on the symmetry axis, y 2  = 1. 
Nevertheless, these are the independent variables in the two ordinary differential 
equations which determine our solutions. Note that large 7) corresponds both to the 
distant outer regions and the neighbourhood of the symmetry axis. 

2.2. Some well known solutions 

Let a solution of (2 .2 )  or (2 .4 )  represent an astrophysically meaningful rotating body 
with mass m > 0, angular momentum J ,  vanishing mass dipole and mass quadrupole 0, 
in geometrical units. Then in (p, e )  coordinates, the functions U, w and I/, adopt the 
following asymptotic behaviour: 

U = -mp-'+(Q-fm3)(?cos2 O-t)p-3+O(p-4), ( 2 . 1 0 a )  

(2 .10b)  

I/, = - ( 2 ~  COS e ) p - 2 +  (2 .10c)  

w = -(U sin2 e)p- l  +ob-'), 

asp  + 00. The coefficients of higher powers of p-' will involve higher multipoles of mass 
and angular momentum type. These formulae will be regarded as boundary conditions 
at infinity for the partial differential equations, (2 .2 )  and (2.4).  Other boundary 
conditions, which will ensure a well behaved symmetry axis, are that the coefficients of 
the power series in p-'  for U, (cosec' 0)w and t,b be polynomials in cos 8. Similarly, the 
coefficients of power series in x - l  for U, (1 - y2)- lw and I/, should be polynomials in y .  

The static or non-rotating case, w = 0, was solved completely by Weyl (1917).  
Putting w = 0 in (2.2) yields 

U, + U,, + u,/r = 0 (2 .11)  

which is the axisymmetric Laplace equation in cylindrical coordinates. The general 
astrophysical solution involves one arbitrary function of one argument. Special solu- 
tions of interest are the Schwarzschild solution, 

or, equivalently, 6 = x ,  (2 .12)  
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with K = m, and the Zipoy-Voorhees solutions (Zipoy 1966, Voorhees 1970), 

u =-a  1 In(-) x - 1  
2 x + l ’  

(2.13) 

with K = ma-’. These fields have mass m and quadrupole Q = m3S-’(S2- 1). S may 
take pure imaginary values by transforming to oblate spheroidal coordinates (2, y ) 
according to 

x = i f ,  Y = Y, K = iK, s = -iS: 

Also, the limit S +CO (or 8+ CO) is quite regular when viewed in (p, 8 )  coordinates. This 
is the Curzon metric, 

U = -m/p. (2.14) 

In fact, U is an analytic function of 8-’ for -CO< S - ’ < C O  with p, 0 held fixed, p 
sufficiently large. Voorhees (1970) interpreted these solutions as the exterior gravita- 
tional fields of prolate spheroids for 1 < a-’ < CO, oblate spheroids for -CO < S-’ < 1, 
and a sphere for S = 1. 

The Kerr metric has the simple formula, 

5 = px - i4Y, (2.15) 

with ~ ’ + 4 ~  = 1, K = mp (Ernst 1968). This field has mass m, angular momentum 
J =  m24 and quadrupole Q = m34’. The potentials U, w ,  4, y are given by 

= p2x2+q2y2-1  
(px+1)2+q2yz’  

U = -  2 m d l -  Y ’>(PX + 1) 

* = -  24Y 

p2xZ+q2y2-1  ’ 

(px + 1)’+q2y2’ 

= p2x2+4’y2-1 
P ’ (x ’ - Y 2 ,  

. 

(2.16a) 

(2.166) 

( 2 . 1 6 ~ )  

(2.16d) 

This is the case S = 1 of the Tomimatsu-Sat0 series. The next case S = 2 (TS 1972,1973) 
is given by 

(2.17) 

wi thp2+q2= 1 , ~  = t m p , J =  m24, Q=:m3(l+3q2). Thepaper,~s(1973),thengives[ 
for S = 3 , 4  and U, U ,  y for S = 1, 2, 3. These latter functions are rational in x and y, if 
K = mpS-’, but the degree of the polynomial numerators and denominators are large, 
like 2 S 2  or 2a2 + 1. TS give seven ‘rules for computation’, labelled (a )  to (g), for these 
polynomials and claim that they can also derive expressions for integers S 2 5. These 
rules are rather weak, for purposes of practical computation by hand, since they leave a 
large number of coefficients undetermined, which can then only be determined by direct 
substitution into Ernst’s 6 equation. 

In this paper, we shall present a relatively quick algorithm for obtaining the 
solutions when S is an integer (§ 11). A demonstration is given in the appendix where 
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the metric coefficient e" is given for S = 1, 2, 3 ,4 ,  5. However, the main objective is to 
generalise the TS solutions to continuous S with --CO < F2 < Co. These will be inter- 
preted as the gravitational fields of rotating prolate or oblate spheroids as for the 
Zipoy-Voorhees metrics. When q = 0, these solutions reduce to the Zipoy-Voorhees 
metrics with the same m and S. 

We shall mainly concern ourselves with parameters in the ranges O<S<cO, 
-1 < q < 1. The extension to faster rotation, lql> 1, is given by the substitution, 

( x ,  Y ,  K ,  P ,  q, a)+  (if, Y ,  - i i ,  -iB, 9,s). (2.18) 

The extension to more flattening of the source (beyond S = CO) is made by 

( x ,  Y ,  K ,  P ,  q, SI+ (-if, Y ,  i i ,  p, q, -i@. (2.19) 

As noted by Ernst (1968), new solutions can be generated from old by the 
Concerning limiting cases, see the last paragraph of § 1. 

substitution, 

6' = elA(, (2.20) 

where A is a real constant, 0 SA < 27r. Except for A = 0 and A = 7r, this transformation 
creates a coordinate-type singularity on (at least) half of the symmetry axis, when the 
mass m # 0, and so does not generate astrophysical solutions. However, the parameter 
A arises naturally in our solutions, so it is worthwhile to discuss this transformation 
briefly. 

The parameter A will be called the NUT parameter because of the well known result 
that the Schwarzschild metric transforms into the Taub-NUT metric (Newman el a1 
1963, Taub 1951; for properties, see Misner 1963, Bonnor 1969). Likewise, the Kerr 
metric transforms into the Kerr-NUT metric (Demianski and Newman 1966). The 
general static Weyl solutions transform into the Papapetrou-Ehlers solutions 
(Papapetrou 1953, Ehlers and Kundt 1962, Ehlers 1965). Each of these authors has a 
different method of derivation. Geroch (1971, 1972) has shown that this type of 
transformation exists for all vacuum gravitational fields admitting a Killing vector, 

The explicit transformation equations for U, and y are 

e"' = e"[(cos ;A - 4 sin +A 1' + e4' sin' $A I-', (2.21a) 

y ' =  y. (2.21c) 

(2.21b) 4' = -cot ;A + (cot ;A -  COS ;A - + sin $A l2 + e4" sin2 ;A I-', 

For the transform of w see Geroch (1971). The asymptotic behaviour of these 
transformed potentials is given by 

U' = -(m COS A )p-' + ob-'), 
+' = (2m sin ~ ) p - '  + 
w '  = constant - 2m sin A cos e +ob-'). 

(2.22a) 

(2.226) 

(2.22c) 

An additional trivial transformation which also enters our work is the replacement, 

(e'", w, +)+ (K e", K - l w ,  K+), (2.23) 

where K is a constant. 
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3. Ordinary differential equations for H4 and K(') 

The metric coefficients and Ernst potentials may be expressed in a simple manner in 
terms of two functions, H4 = H4(77) and K'"= K(')(v, T), satisfying independent 
second-order ordinary DE in independent variables, 77 and v, respectively. (Recall the 
definition (2.9) for 77 and v.) 

The DE for H4 is 

where the prime denotes d / d q  subject to the boundary condition, 

H4= 62p-2+o(77-1) as 77 +CO.  (3.2) 

6 and p = (1 - q2)"2 are arbitrary constants which will be identified with the corres- 
ponding parameters of TS (1973) in 0 8. Attention will be mainly concentrated on the 
ranges, 0 < S < CO, -1 < q < 1, 0 < p S 1. Regarding 77 as a complex variable, H4 is an 
analytic function of 77 in the whole complex 77 plane, including 77 = CO, except for a finite 
number of simple poles and, if S is not an integer, two branch-point singularities at 77 = 0 
and 77 = -1 requiring the plane to be cut from 77 = 0 to 77 = -1 along the real axis. The 
real simple poles, 77 = T O ,  771, 7 7 2 , .  . . , 7 7 0 > 7 7 1 > 7 7 2 > .  . . , will be seen, in §4 ,  to 
represent the infinite red-shift surfaces. An efficient method of solving the H4 equation 
by infinite series is given in 0 10.1, When 6 is an integer, H4 is a rational function of 77 
and q 2 .  

Many later formulae are shortened considerably if, in terms of H4, we define several 
other functions of 77 : 

50 

A = exp( I, (1 + <)-'l2w1(<) d<), 

cc 

l- = exp( -lm <-'(1 + < ) - ' ( I Y ~ ( < ) - ~ ~ )  d<). (3.7) 

When 6 is an integer, is a polynomial in 77-l of degree S2; H4, H2, u1 and w2 are 
rational functions of 77 with qb2r as denominator and A is a rational function of 77 and 
(1 + Q ) ~ " .  r(7) is tabulated in the appendix for 6 = 1 , 2 , 3 , 4 , 5  and H4, H2, crl, ( ~ 2  and 
A are tabulated for S = 1, 2, 3. For general 6 and all q f *1, r is analytic in the complex 
77 plane (including 77 = CO) cut from 77 = -1 to 77 = 0. The zeros of r are simple poles of 
H4, H2,  crl and w2 and are either simple poles or zeros of A. The signs of the square 
roots given in equations (3.3)-(3.6) are appropriate for the outer regions, 77 > v0, and 
should be determined by analytic continuation for the inner regions. 

The second ordinary DE, with v as independent variable and 77 regarded as a 
constant parameter, is for either of two closely related functions, K'"= K(')(v, T), 
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where E = + 1 or - 1. It is: 

This is a linear Fuchsian equation with five regular singular points and takes the form 
[2,3,0]  in the Ince classification scheme (Ince 1927). Some properties of this equation 
and its solutions as well as alternative DE are discussed in 0 10. When S is an integer and 
(3.1) and (3.2) are satisfied, equation (3.8) admits polynomial solutions. The metric of 
space-time will depend on two linearly independent particular solutions of (3.8). These 
are the functions Kl"(v, q )  and K:"(v, q )  defined by the boundary conditions: 

a t v = O  (3.9a) 

K:"= E i ,  Kf>= ( 1 + q ) 1 / 2 ~ 2 + H 2  at U = 0. (3.9b) 

K f ' =  1, K'" - - E i ( ( l +  q ) 1 / 2 ~ 2  - H ~ )  

They satisfy 

E K ~ ) K ? >  - K $ ) K ? ~  = 2(1 +q)"2(1 - v2)- l ( l  + ~ ~ v ~ ) - " ~ ( ( T ~ - E E ~ ~ ~ ( T ~ u ) .  (3.10) 

The close relation between K'+') and K'-') is shown by the following formulae: 

K:"(v, q)= K { - f ) ( - ~ ,  q), (3.11a) 

(3.1 1 b )  

(3.12) 

In all formulae below involving K'", it is strongly advantageous to retain E as a 
two-valued parameter rather than give E one of its particular values, such as E = +l. In 
this way, all relations which are not invariant under -E + --E actually split up into two 
independent relations. Throughout the rest of this paper, except where confusion may 
arise, the superscript ' ( E ) '  will be dropped from K'", K?) and Kf). 

The functions H4, K 1 ,  K2 and those defined by (3.3)-(3.7) depend on three parame- 
ters, namely S in (3.1), q in (3.2) and K in (2.8) and (2.9). The space-time metrics 
constructed from these functions in P 4 will be the asymptotically flat metrics containing 
the discrete TS series but unphysical metrics with more parameters result from the same 
formulae if the definitions of H4, K1 and K2 are generalised in the following manner. 
First, let H4 be any solution of (3.1), i.e. not subject to (3.2). Then (3.3t(3.7) still apply 
except that 'sgn q' may be replaced by *1 and J: must be replaced by 5, = -r, i.e. minus 
any indefinite integral. Second, the boundary conditions (3.9) for K 1  and K2 may be 
generalised by the replacement, 

K1+ alKl+ ( ~ 2 A - l  K2, K2 + a3AK1+ a4K2, (3.13) 

where a1,. . . , a4 are constants and a I ( Y 4 - f f Z a 3  = 1. These two generalisations each 
contribute one additional non-trivial parameter. 

A third non-trivial parameter, h, may be introduced into the differential equations 
themselves. Let H4 be any solution of 

7) '( 1 f q)'H4N2 = 4(qHL2 - H4Hi - h ')>[ -a2  + H4 - (1 + q)Hk] (3.14) 
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which clearly reduces to (3.1) when h = 0. Let H2,  al, a2 and r be defined by (3.3), 
(3.4), (3.5) and (3.7) with the same comments as above applying, but A must be defined 
very differently (see 8 5 ) .  Define also 

H1= f$q2a: (T:  - h y  (3.15) 

with sign chosen so that (3.14) simplifies to 

When h = 0, H1 = 4qa1~2. (Several other useful differential identities are given below 
in (5 .7) . )  The equation for K must be modified to 

(3.17) 

The boundary conditions for the particular solutions K1 and K2 are rather complicated 
when h # 0 and will be postponed till 0 5 .  For the present, it is sufficient to note that 

A =  KlK2,- K2Kl. 

= 2 ( 1 + ~ ) ~ ' ~ ( 1 -  v2)-l(l +qv2)-1/2(7a1)-1(-~iq2a:y+2H1+~ih), (3.18) 

and that, with this expression for A, equation (3.12) holds. It is interesting that, even 
when h # 0, there is a discrete series of S values which lead to relatively simple 
elementary functional forms for the solutions of (3.14) and (3.17). These cases, which 
are very briefly mentioned at the end of § 11, reduce to the TS metrics, where S is an 
integer, when h = 0. 

4. Construction of the metric and Emst potentials from H. and K 

The complex Ernst potentials, 8 and 6, are not the most convenient for our purposes. 
Instead, from U and 4, construct 

(4.1) - 2 u  F - - 2 U  ( I j / 2  + e4U) F~ e-2u, F2=-Ij/e , 3 = e  

satisfying F1F3 - F: = 1. Explicit formulae for the F are 

F1 = AKf)Ki-')= - ~ E ~ A A - ' [ K ~ K ~ ,  + ~ i H 2 ( 1 -  v2)- lK?] .  (4.2a) 

F2 = $K';'K$-''+fKf'K';"= - E ~ A - * [ K ~ K ~ ~  +K2KlV +2~iH2(1 -  vZ)-'K1K2], (4.2b) 

F~ = ~ - 1 ~ f ) ~ i - c )  = - -~E~A- 'A- ' [K~K~,  +€iH2(1 - v2)-'K:]. ( 4 . 2 ~ )  

The metric coefficients, w and e2', may now be calculated by quadratures using (2.3) 
and (2.66), respectively. Actually, both functions may be expressed in terms of 
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functions already defined in $ 3  without the need for quadratures. The F form three 
linearly independent solutions of a third-order linear DE which is investigated in 6 7. 

It is a far from straightforward matter to show by direct substitution into Ernst’s 
equations that we actually have a vacuum gravitational field. The main difficulty arises 
in determining the behaviour of K1(v, 77) and K2(v, 77) with respect to 77. The proof 
appears in § 6 after an efficient method of dealing with the 7 and Y behaviour on an 
equal basis is established. Similarly, it is very difficult to show directly that our solutions 
are asymptotically flat and are well behaved on the symmetry axis. This proof is given in 
8 8 with the aid of the F equation. 

The formulae (4.2) apply also to the larger class of unphysical solutions with six 
non-trivial parameters, though, for h # 0, we have yet to define A(7)  and the appro- 
priate boundary conditions for K1 and K 2 .  Consider the effect of the replacement 
(3.13), which is applicable for all h, on F1,  F2 and F3. They transform as follows: 

F1+ a :F1+ 2a 1 a 2F2 + a :F3, 

Fz + aia3F1 + (aia4+ a2a3)F2 + a2~4F3, (4.3) 
F3+a:F1+2a3a4F2+a~F3.  

This is easily seen to be a composition of a NUT transformation ( 2 . 2 1 ) ,  a trivial 
transformation (2.23) and the replacement (I/ + (I/ +constant. These three transforma- 
tions form a group isomorphic to SL(2) and represented by the unimodular matrix, 

The case of a pure NUT transformation with NUT parameter A is given by 

(4.4) 1 1 ( Y ~ = ( Y ~ = c o s T A ,  c y 2  = -a3 = sin TA. 

The other two unphysical parameters, namely h and the one introduced by dropping the 
boundary condition (3.2), admit no such easy identification. They both destroy 
asymptotic flatness and create a curvature singularity along the symmetry axis. 

The metric coefficient e2’ actually has a surprisingly simple formula. If h = 0, then 

a function of 77 only, and if h # 0 ,  

2h - 8 2  

1- (4.6) 

These results are proved in § 6 .  
Let us now construct a Ricatti equation from the linear K equation. Then we shall 

be able to construct a compatible Ricatti equation in independent variable 7 with Y held 
constant. With the aid of a set of six identities, it will then be straightforward to show 
that the vacuum Einstein equations are satisfied as well as prove (4.5) or (4.6) for e2’ 
and (4.19), below, for w .  For the present, consider only h = 0 and (a l ,  a2,  a3, a4)= 
(1, 0, 0, l), but (3.2) need not necessarily be imposed. 
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From K1 and K2,  construct three functions MO, Io and Jo, independent of E = *l ,  
according to 

(4.7a) 

(4.76) 

Note that (4.7) splits into four equations because of the two values of E .  They are 
compatible on account of (3.10) and (3.12). The branches of the fourth roots are 
determined by making them take the value +1 when v = 0. On differentiating (4.7a, b) ,  
using (3.10) and (3.12), the MO, Io and Jo are seen to satisfy the following differential 
relations: 

MOy = A  + BM;, (4.8) 

Ioy = 2 BMoIo, (4.9) 

Joy = -BIo, 
where 

R"* ( 1 + q  Hi A = A ( v ,  q ) = y +  - 
1-v  l + q v 2  R 1 - v  ' 

(4.10) 

(4.11) 

(4.12) 

where Hi = :qala2 and 

R = R (v, q )  = (1 + q)(1+ qv2)- '(a: + q2a:v2) ,  (4.13) 

The transformations (3.13) or (4.3) correspond to 

MO + M = MO + Io(Jo + a 
IO + I = A210(a2 Jo + a A)-2, 

;'A)-', 

JO+J= ((Y4AJO+~y3.~2)(Q2JO+alA)-1, 

( 4 . 1 4 ~ )  

(4.14b) 

( 4 . 1 4 ~ )  

The functions M, I and J satisfy the same differential relations as MO, IO and Jo. Note 
particularly that M satisfies the Ricatti equation, 

(4.15) 

and that ( 4 . 1 4 ~ )  shows how the general solution of (4.15) is constructed from a 
particular solution M = MO (interpreting aIaZIA as the arbitrary constant of integra- 
tion). It is clear from (3.9) and (4.7) that MO, Io and Jo  are distinguished by the following 
simple boundary conditions at v = 0: 

M o a  7 7 ) =  0 ,  Io@, 77)s 1, Jo(0, q)= 0. (4.16) 
In terms of MO, IO and Jo,  the explicit formulae for the metric coefficients and Ernst 

eZu = K 1 I O ( l  +Mi)- ' ,  (4.17) 

CC, = -A-'IoMo(l+ M;)-' - A-'Jo, (4.18) 

w = 2 ~ 6 q p  (4.19) 

M,  = A + BM', 

potentials take the form: 

+ 2~ AI;'[ R 1'2( 1 - M i )  - H2( 1 + M;)] . 
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Equations (4.17) and (4.18) follow directly from (4.1), (4.2) and (4.7). This explicit 
formula for w will be shown in the next section to satisfy equations (2.3). The additive 
constant 2~Sqp- I  in (4.19) is chosen so that w+O as 77 +CO when (3.2) applies, 
(a1,  a2, a3 ,  a d )  = (1, 0, 0, 1) and h = 0. In all other cases, an arbitrary additive constant 
may be substituted. 

In practice, w should not be computed directly from equation (4.19). A much better 
formula, 

w = K [ ~ q p - ’ - 2 ~ ~ e - ~ ”  - ( ~ - v ’ ) * ~  e-4u], (4.20) 

follows immediately from (4.17)-(4.19) and (4.8)-(4.10). In fact, the functions MO, Io 
and Jo, though of considerable theoretical utility, are very poorly suited to investigation 
of the physical properties of space-time, especially in the asymptotically flat outer 
regions. The difficulties arise from the fact that R 1 / 2  is directionally singular at infinity. 
A single simple example will suffice to show this singular behaviour. A direct substitu- 
tion from (2.16) and the appendix gives for the Kerr metric, 6 = 1, in spheroidal 
coordinates, 

(4.21) RI12 = ( p 2 x 2 + q 2 y 2 - 1 ) - ’ [ p 2 y 2 ( x 2 -  1)2+q2x2(1-y 2 ) 2 ] 1 / 2  , 

MO = y - y  p x 2  + 2x + p ) - ’ (  p 2 x  + q2y2 - 1 ) - ’ ( - q 3 x y 4  + q y 2 ( - p 2 x  + p 2 x  + 2x + 2 p )  
- q x ( p x + 1 ) 2 + [ ( p x + 1 ) 2 + q 2 y 2 ] [ p 2 y 2 ( x 2 - 1 ) 2 + q 2 x 2 ( 1 - y  2 ) 2 ] 112 >. 

(4.22) 

Clearly 

lim lim # lim lim 
y - 0  x-m x-00 y - 0  

for many expressions involving R ‘ I 2 ,  MO, Io or Jo and we shall say that these functions 
suffer from the ‘R  singularity’. The functions K1, K2,  F1, F2 and F3 are all free of this ‘ R  
singularity’, though it appears in a more or less innocuous fashion in the DE (3.8). (See 
69 7 and 10.) 

The formulae (4.17)-(4.19) are, however, useful for the equatorial plane v = 0. On 
v = O ,  $=Oand  

e’” = A-’, w = 2K6qp-’ + 2K A[ (1 + 77 )l l2U2 - Hz]. (4.23) 

A knowledge of the metric coefficients on the equatorial plane only is sufficient for 
many investigations. The functions in (4.23) may be efficiently computed by the 
methods of 9 10 even in parts of the highly curved inner regions of space-time. Note 
that the real zeros of I‘(v), say 77 = 770,771,772,  . . . (arranged so that x o > x l  > x 2  >. . . , 
running into negative values, where v i  = x t -  1 for y = 0, the sequence terminating at 
- X O )  are simple poles of H4, H2, u1 and g 2  and are alternately simple poles or simple 
zeros of A. In particular, 70, 772, 774, . . . are simple poles and T ’ ,  713, q5,  . . . are simple 
zeros of A. The simple zeros of A represent ring shaped curvature singularities on the 
equatorial plane. These ring singularities are well known in the cases of the Kerr and TS 
metrics. TS (1973) noted, without proof, that the space-times with S an integer have 
exactly 2s infinite red-shift surfaces and that the ring singularities on the equatorial 
plane reside on every second such surface. 

Actually, the full (2 + 1)-surfaces, 77 = v0, 7) = vl, .  . . , each having topology S 2  x R I ,  
are precisely the infinite red-shift surfaces of space-time. On these surfaces, the metric 
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and Ernst potentials assume familiar transcendental functional forms (of the coordi- 
nates, but not the parameters). When the limit 77 + v0 is taken in the DE (3.8), all the 
coefficients remain finite. In terms of the constants, 

AO = lim (77 - v ~ ) A ( r l ) ,  (4.24) 
7-110 

so = m0), To = Y(770), 

and a new dependent variable, 

(4.25) R(v)=( l -~ i770  1/2  v) -1 /2  K (€) (Y, 770)=(1+~i77~/2v)-1'2K(-')(~, 770) 

(independent of €-consistent with (3.12)), the limiting equation reads: 

t770(1 + 77o)ToSO' - s2770 ) B  = 0. 
1 1 + 7 7 0 v 2  ( 1 J ) 2 +  

S2 + A-- 
(1 - v2)(1 +qov2)  

(4.26) 

This is precisely a Lam6 equation for (1 - v2)'14R in the form [2 ,2 ,0]  in the Ince (1927) 
classification scheme. The substitution p = v2  puts it into the more familiar [3,  1, 01 
form. The particular solutions, 

R 1 ( v ) =  (1 -EiTA/2v)-1/2Kl(v, v0), 

E2(1/)= (1 -eiTA'2v)-1'2 lim (77 - 770)~2(v,  7) , 

K1= 1, E'" = 0, K, = 0, K.2" = 277:'2(1 +TO), 

Lo 1 
satisfy the boundary conditions, 

at v = 0, implying that itl is even, 
the surface 77 = 770 are given by 

odd in v. The explicit formulae for e*', t,b and o on 

( 4 . 2 7 ~ )  lim (77 - q0)-l e2" = A;'(I + 770v2)-1/2(E1(v))-2, 
rl-110 

(4.276) 

( 4 . 2 7 ~ )  

Equally simple formulae apply for the normal derivatives of these functions and for the 
metric coefficient, e-2u(02 e4' -r2). 

The corresponding formulae for the infinite red-shift surfaces, 77 = v2,  77 = 774,. . . , 
are identical to the above (if 77zi > 0) if we replace So by S Z  = r'(q2), and so on. The 
cases, 77 = ql, 77 = 773, . . . , which carry the ring singularities, need to be treated slightly 
differently. Similarly, minor adjustments are needed for those cases where 77 < 0 
and/or x < O  which are of interest only in the case when S is an integer. Consider 
7 = vl, supposing 771 > 0 and x > 0 on 77 = 771 (true at least for 6 3 2). Then equations 
(4.25) and (4.26) remain unchanged except for the obvious replacement of vo, So, To by 
771, SI = rl(ql), Tl = Y(ql). The particular solutions Rl(v) and R 2 ( v )  are defined 
somewhat differently by 

~ ' ( v )  = E i ( l  - E i q ; / 2 v ) - I / 2 (  lim (77 - q l ) ~ l ( v ,  V I ) ,  

K ~ ( v ) =  -ei(l -ei77"2v)-1'2~2(v, ql), 
V'?l 
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and satisfy boundary conditions, 
R, = 0, El" = 277:/2(1+771), R2= 1, K2" = 0, 

at v = 0. Then, with 

the formulae for e2', sl, and w take the form, 

(4.28a) 

* = 'G1R2(v)(El(v))--l,  (4.28b) 

w e2' = -K7):/2(1-v2)(1+771v2)-1* ( 4 . 2 8 ~ )  

Note that e2' vanishes on all the surfaces, 77 = 770, 77 = T ~ , .  . . , except on the 
equatorial plane (v = 0) in the cases, 77 = 771, 77 = v3, . . . , where it is singular. The 
vanishing of e2' is the criterion for an infinite red-shift surface which is the boundary of 
an ergosphere (e2' s 0). 

Let us conclude this section with a discussion of the various possible singularities of 
our (asymptotically flat) space-times. If S is not an integer, then H4, H2,  ul, u2 and A 
have complicated branch point singularities at 77 = 0 and 77 = -1. Consequently, the 
( 2  + 1)-surface, x = 1, is a natural boundary for the exterior vacuum metric. Outside 
x = 1, there are no other singularities apart from the ring singularities already discussed 
(if any with x > 1). The most important use of these solutions in astrophysics would be 
as vacuum exteriors of finite rotating bodies, 5.g. neutron stars, whose mass and angular 
momentum multipole moments depend on precisely three parameters. 

However, if S is an integer (and q # 0), one may meaningfully discuss the highly 
curved inner regions beyond x = 1. The functions, H4, H2, ul, g2 and A are now 
analytic at 77 = 0 and 77 = -1 (except that A is an analytic function of (1 + q ) l I 2  at 
77 = -1). In the case S = 1 (Kerr metric), the surfaces x = 1 and x = -1 are the 
non-singular event horizons. For 6 2 2, TS (1972,1973) also interpreted these surfaces 
as event horizons, but this is not strictly correct (see Gibbons and Russell-Clark 1973, 
Glass 1973). In these cases, the poles, x 2  = 1, y 2  = 1, appear as directional singularities. 
Actually, for 6 = 2, Ernst (1976) and Economou (1976) have shown that these 'points' 
are non-singular surfaces as suggested by the calculation of the Weyl tensor (Economou 
and Ernst 1976). Without doubt, the main conclusions of these two authors will apply 
for 6 3 3, except that the interesting wormhole topology will increase in complexity. Of 
course, these solutions cannot be considered as 'black holes' because of the naked ring 
singularities. Nevertheless, they deserve some consideration as possible end-points of 
gravitational collapse since the non-formation of naked singularities is still conjecture. 

5. Ricatti equations for MO; q dependence 

In the last section, we saw that (for h = 0) the function Mo(v, 77)  was a particular solution 
of the Ricatti equation, 

M , = A + B M * ,  (5.1) 
satisfying Mo(O, q ) = O .  The general solution is given by (4.14a) if alcu;'A is inter- 
preted as the arbitrary 'constant' of integration. The coefficients A and B are given by 
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(4.11) and (4.12). Now, we shall prove that M, as defined by (4.14a), satisfies the 
Ricatti equation in independent variable q, 

M,,=c+DM+EM', (5.2) 
where 

D = D(u, q)= 2 ~ 7 - ~ H l R - ' / ~ ,  (5.3) 

minus sign for C, plus for E. Considering the identity, M ,  -M,,,,, we see that 
compatibility of (5.1) and (5.2) is guaranteed by 

A,, - C,, - DA = 0, 

DV-2BC+2EA = O ,  (5.6) 
B,, -E,, + DB = 0, 

which may be proved by direct substitution. (Note: the following identities, which 
follow directly from (3.3)-(3.6), (3.15) and (3.16), are most useful in these calculations: 

H ' - -  4 -  U 2 3  Hh = -2q-lH1, (5 .7a,  6) 

Hi = -;( 1 + T)-~H~(cT:  + ~ c T : ) ,  A ' =  -(1 + v ) - ~ ' ~ c T ~ A ,  ( 5 . 7 ~ ,  d )  

u2=- 
I ( 5 . 7 e , f )  

2HlH2 ( + I  2H1H2 (+; = _ _ -  
rl 7 7 2 ( 1 + d d  17 (1 + T ) g 2  ' 

Except for (5 .7d)  for A', these equations are written in a form valid also for h # 0.) 
Now the identities (5.6) are not quite sufficient to guarantee that M satisfies (5.2) when 
the functional form (3.6) of A is taken into account. If (5.6) are solved for unknowns C, 
D and E, then the solutions are determined up to three arbitrary functions of 77. 
However, two of these are completely arbitrary-only the third is determined by the 
functional form of A. So, to complete the proof of (5.2), merely set U = 0 in (5.2), using 
(4.14a), (4.16), (5.3)-(5.5), to obtain 

A ' =  -D(O, q ) A .  (5.8) 
This is in agreement with the definition (3.6) or ( 5 . 7 4 .  

It is now a simple matter to verify the important identities, 

MO,, = C + DMO + €Mi,  

(A-lIo),, = (D + 2€Mo)A-'I,, 
(5.9) 

(5.10) 

(A-'J~),, = -EA-'I~, (5.11) 
which are satisfied also by M, I and J. The theoretical importance of the functions MO, 
Io and .To rests on the set of six identities (4.8)-(4.10) and (5.9)-(5.11). The proof that 
Einstein's vacuum equations are satisfied is now straightforward, though rather lengthy 
(see 9 6). Consider, for example, the formulae (4.17), (4.18) and (4.19)for e2', and w.  
In (U, q )  coordinates, the relations (2.3) read: 
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These may now be proved by direct substitution using the relations (4.8)-(4.10) and 
(5.9)-(5.11). 

Let us now derive the appropriate boundary conditions for K satisfying the DE 

(3.17) for the cases h # 0. First, consider the two compatible Ricatti equations, 

(5.13) 

where A,  B and D are defined, as before, by (4.1 l) ,  (4.12) and (5.3) with the definition 
of R modified to 

M, = A  + BM~,  M, = c + DM + EM', 

2 2 2 -  R = (1 + 7))(1+ 7-/v2)-'((r:+ 7 (r1v 2hv) ,  

and the definitions of C and E are modified to 

(TR '" + H2).  
c Hqv-h(l-vv2)  

{ E 1  = 27(1 +vv2)R 

When h # 0, we cannot define a particular solution, M = MO, satisfying Mo(O, v)= 0. 
Consequently, we must choose MO to be the particular solution of (5.13) satisfying 

Mo(0, v)=Pn(v) 

where ,uo is any particular solution of the Ricatti equation, 

P I =  C(0, v)+D(O, v)cL + W O ,  7 ) P 2 .  

CL =Po+Pl / (PZ+C),  

Now, the general solution of (5.15) is 

where c is the arbitrary constant of integration and 

= e w j l " ( ~ ( ~ ,  ; i ) + 2 ~ ( 0 ,  i ) m ( i ) ) d i ) ,  

p 2 = - J n ~ ( 0 ,  i ) P l ( j l ) d i ,  

where a is a fixed constant. The general solution of (5.13) now reads, 

M = MO +Zo(Jo + ala;'A)-' 

where ala;' is the constant of integration and 

l a = e x ~ ( [ ~ ' 2 B ( C  v)Md;, v)dc) ,  

Jo=-["B( i ,  0  IO(;, 7)dG+~2wU; ' ,  

A = p ; I .  

(5.14) 

(5.15) 

(5.16) 

( 5 . 1 7 ~ )  

(5.17b) 

( 5 . 1 8 ~ )  

(5.186) 

(5.19) 

The MO, lo, .Io and ,I defined in this way satisfy the identities, (4.8)-(4.10) and 
(5.9)-(5.11). So also do M, Z and J as defined by equations (4.14). 

Now construct e'", 1/1 and w by equations (4.17), (4.18) and (4.19), respectively 
(noting that the additive constant, 2 ~ 6 q p - ' ,  in (4.19) may be replaced by an arbitrary 



New exact stationary axisymmetric solutions 1497 

constant). Clearly, the relations, (2.3), or, equivalently, (5.12), are satisfied. Next, 
construct 

(5.206) 

It may now be immediately verified that K 1  and K 2  satisfy the differential equation 
(3.17) and the relations (3.18) and (3.12), and that eZu and (I, are given by the formulae 
(4.2). The boundary conditions satisfied by K1 and K2 at v = 0 are: 

K1 = e ( l  +eipO),  ( 5 . 2 1 ~ )  

K ~ ,  = e[po((i+77)1'2(+2+H2)+Ei((i+77)1/2(+2-H2)], (5.216) 

K 2 =  ~ c L ; ~ [ c L ~ + E ~ ( c L ~ + I L ~ c L ~ ) ~ ,  ( 5 . 2 1 ~ )  

(5.21d) K 2 ,  = ep;'{(pl +pOp2)[(1 + 7 7 ) 1 ' 2 a 2 + ~ 2 ~ + ~ i p 2 [ ( 1  + 7 7 ) " ' ( + 2 - ~ 2 1 1 .  

where 

Note that when h # 0, the explicit formulae for the metric coefficients depend on 
three, rather than two, ordinary DE. The third is the Ricatti equation (5.15), which we 
shall not discuss further in this paper. When S takes the discrete series of values (see 
(11.22), below) for which the H4 and K equations admit elementary functional 
solutions, the Ricatti equation (5.15) also admits such solutions. 

6. The 'H' equations; proof that Einstein's and Emst's equations are satisfied and 
comparison with Tomimatsu-Sat0 'rule (a)' 

In (Y, 77) coordinates, Einstein's equations take the form: 

+ (1 - v 2 ) 2  U*,, + 4 77 (1 + 77 ) 2 ~ v ~ ,  = 0. (6.2) 

We have already mentioned that these can be proved by direct substitution from (4.17) 
and (4.19), using the six identities (4.8)-(4.10) and (5.9)-(5.11). Actually, the relations 
(5.12), whose proof requires much less labour, imply E2 = 0 since 

E2=~~q(l+~)(l+qv2)~1(1-~2)2e-4U(~(JIv)--(JI,)) a a = O .  (6.3) 
a q  
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Similarly, a direct substitution from those same identities will prove the following 
interesting formulae: 

2 2  2 -- - 4q [ $ ( l - v  ) u.+q(1+77)2U:1 
1+7) 

+ (1 + qv2)2 2 e 4 u [ b ( i - Y  2 2  w.+77(i+t7)241, 2 
K 2 ( l + q ) ( 1 - v  ) 

2 4  + 1 - q  Y 2e4u[i(1-v 2 2  ) w y - q ( 1 + ~ ) 2 ~ : 1  2 

K2(1  + q)( l -  Y ) 

2q(1-  v"(1- q v 2 )  
1 + v u 2  

1 - q 2 Y 4  + -2K2(1 - .2) e4uwyw,. 

(6.7) 

These formulae are valid for all h, all (a l ,  a2,  a3 ,  a4) with (Y1&4-a2&3 = 1 and for any 
solution of the H4 equation (3.14). Note that the left-hand sides of (6.4)-(6.8) are 
independent of (al ,  a ~ ,  a3, a4). In fact, it is easy to show that if any stationary 
axisymmetric vacuum solution of Einstein's equations is substituted into the right-hand 
sides of (6.4), (6.6), (6.7) and (6.8), then these expressions are invariant under the 
transformations (4.3) which contain the NUT transformation. This general theorem is 
not true for the right-hand side of (6.5). 

Now the metric coefficient e2' is obtained by quadratures from (2.6a). Converting 
to ( V J )  coordinates and comparing with (6.7) and (6.8), we have the remarkable 
results, 

y, = 2h( 1 - U*)-', y, =+q-1(l+q)-1H4.  (6.9) 
Compatibility is obvious and the expression (4.6) for e2' follows immediately. Note 
that when h = 0, 

(6.10) e2' = ( 1  + i/+'*ryq), 



New exact stationary axisymmetric solutions 1499 

a function of q only. When S = 1 , 2 , 3 , 4 ,  this result may be directly compared with the 
results of Tomimatsu and Sat0 (1973). They find 

2 - 8 2  e2’ = (constant)(x2 - y ) A ( x ,  y )  

where A (x ,  y ) is a polynomial in x and y of degree 28’. Inspection of their tabulated 
forms of A ( x ,  y )  for S = 1, 2 , 3  (and when S = 4 it is easy to construct A (x ,  y )  from their 
tabulated form for 5 )  shows that it is a homogeneous polynomial in the variables, x 2  - 1 
and 1 - y 2 .  Thus e2’ is a function of ( x 2 -  1)/(1- y 2 ) =  77 only. In the appendix, we 
tabulate r(7) for S = 1,2 ,  3 , 4 , 5  and, in the first four cases, our expressions are in 
precise agreement with those of TS. 

The complete proof of Einstein’s equations may now be deduced from (6.3) and the 
compatibility of (6.9). From (6.9), (6.7) and (6.8), 

Similarly, from (6.6), (6.7), (6.8) and (3.5) 

1-u’ a a 1 1 
1+q  av d q  277 277 

- (h  ) + - (H4) + - H3 - - H4 

(6.11) 

(6.12) 

This last result is equivalent to the Einstein equation, 

Of course, with (6.1) and (5.12) now known to be satisfied, Ernst’s equations follow 
immediately. 

Equation (6.8) may be compared with the TS ‘rules for computation’. Converting 
(6.8) to (x ,  y )  coordinates and using (2.3) and (2.5a, b),  we get 

h = ( ~ ~ - ~ ) ( ~ - y ~ ~ ( ~ , ~ , + t e ~ ~ “ ~ ~ ~ , )  
= g ( x  1 2  - 1 ) ( 1 - ~ ~ ) e - ~ ” ( $ ~ ~ ~ + ~ X * $ ~ )  

= & c x 2 -  i)(i -y2)e-4u(i  - q 2 ( 1  - ~ * ) 2 ( ~ x ~ ; + g ~ y ) ,  (6.13) 

where the asterisk denotes complex conjugate. Now TS write 5 as the ratio of two 
complex polynomials, a and p :  5 = a/P. Their ‘rule (a)’ states: 

Im(Pa, - aPx = 0 ,  Re(@, - apy ) = 0. 



1500 C M Cosgrove 

Since, for general 8, there is no obviously preferred numerator and denominator, we 
combine these two relations to form a single relation for 5 :  

2 *-2 txt; + t:ty = 2P - P [Re(P.x - Q P X  1 Reway -a@, 1 
+ Im(Pa, - cupx) Im(pay - a@,)] = 0. 

Thus the statement, ‘ h  = O’, is equivalent to TS ‘rule (a)’ and this latter rule has been 
given a meaningful interpretation for all S. 

In a future paper (Cosgrove 1977d), I shall prove that TS ‘rule (a)’ uniquely 
determines the solutions of this paper with h = 0. Indeed, the more general equation, 
(a/dv)h = 0, interpreting h as the right-hand side of (6.8) or (6.13), if taken as the only 
constraint on U and OJ over and above the stationary axisymmetric vacuum Einstein 
equations, uniquely determines our three-parameter family of astrophysical solutions 
but allows a larger class of unphysical solutions. 

Throughout the remainder of this paper (except briefly in § 1 l) ,  I restrict attention 
to the astrophysical solutions where h =0,  ( a l ,  a2,  a3, a 4 ) = ( l ,  0, 0, 1) and (3 .2)  
applies. 

7. The ‘F’ equation; return to spheroidal coordinates 

In § 4, the Ernst potentials were expressed in terms of the solutions of the second-order 
K equation. An alternative procedure is to obtain F1, Fz and F3 directly as linearly 
independent solutions of a third-order linear DE. This equation, though less mathe- 
matically simple than the K equation, has some distinct advantages, especially with 
regard to the investigation of the asymptotically flat outer regions. Later in this section, 
we shall use the identities (4.8)-(4.10) and (5.9)-(5.11) to construct the F equation in 
arbitrary curvilinear coordinates and then obtain a compact and very useful form in 
spheroidal coordinates. 

First, consider F 1 .  From (4.17) and (4.8)-(4.10), 

F~ = AI;~(I +M& 

[ ( 2 A  -2B)-’F1,].  =&‘(A -BMi).  

Flu = 2 ( A  - B)AI;’MO, 

Hence, eliminating MO and IO, and dropping the subscript from F1,  there results the 
Appell equation (Appell 1889, Cosgrove 1977a): 

2 
-B”Fv - ( A  -B)’F) + ( A  + B ) ’ [ F t -  ( A  -B)’F2] = 0. 

F = Fl is a particular solution; F = F3 is another. The general solution takes the form, 

F = a2F1 + 2abF2 + b2F3, (7 .2 )  

where a and b are arbitrary functions of 7. However, a look at the 7 dependence of F, 
using (5.9)-(5.11), shows that a and b are actually constants (cf (4.3)). All Appell 
equations may be converted to second-order linear equations (Cosgrove 1977a) or to 
third-order linear equations (Appell 1889). The former approach leads back to the K 
equation, the latter to the ‘F’ equation about to be derived. 

If the left-hand side of (7.1) is divided throughout by ( A 2 - B 2 ) ’  and then differen- 
tiated, the resulting expression factorises into two linear factors, one of the second 
order and one of the third order. The vanishing of the second-order factor gives rise to 
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two ‘singular integrals’ which in this case are spurious. The other factor yields a 
third-order linear Fuchsian differential equation which has F1,  F2 and F3 as linearly 
independent solutions. This equation reads 

277v 6v  2v 4 v 2 + d  

6v2-2-48’  4 H 4 - 6 7 ) ~ ~  77 + 27)v2 
(1 + 7v2) (v2  - e )  

- + + 
(1 - v2)2 (1 - v2)(1 + 7 v 2 )  (1 + ~v 

This equation has six regular singular points. This number can be reduced to five by 
changing independent variable to 

p = u .  (7.5) 2 

The resulting equation is 

F,, +- 

4(1-S2) 10 4H4+27)-87)p 7) + + -- - 2771 + 

(1+7)CL)(F-e) ( 1 - / d  1-CL (1 -cL) (1+7)CL)  ( 1 + 7 ) P )  

(7 .6)  
These equations are discussed briefly in § 10. A most important property is that the 
polynomial, a: + 77 at v , does not occur in the denominator of any of the coefficients in 
(7.3) or (7.6).  Thus equations (7 .3)  and (7.6) are free of the directional ‘ R  singularity’ 
(see the paragraph containing equations (4.2 1 )  and (4.22)),  though the Appell equation 
(7.1) is not. 

The boundary conditions at CL = v 2  = 0 which distinguish the particular solutions, F1, 
F2 and F3, are most conveniently expressed in the following manner: 

2 2 2  

A - ’ F ~  = i + [ 2 ( i + 7 ) ) ~ ~ + ( i + 7 ) ) 1 / 2 ( ~ ~ 1 - 2 ~ 2 ~ 2 ) ] ~ 2 + ~ ( ~ 4 ) ,  ( 7 . 7 4  

hF3= 1+[2 (1+~)a : - (1+q)1 /2 (7 )a1-2~2H2) ]~2+O(~4) ,  (7 .7c)  

F* = 2(1+ 7))1/2c2v + o ( ~ ~ ) ,  (7.76) 

as v += 0. F1 and F3 are even in v ;  F2 is odd in v. 
So far, in the K and F equations, 77 has been held constant. However, analogous 

ordinary differential equations can be constructed with 7 as independent variable and Y 
held constant. They are second order or third order and linear as for the original DE, 
but they cannot be put in Fuchsian form (6 #integer) since the coefficients are 
complicated transcendental functions of 17, i.e. depending on H4,  etc. Their derivation 
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proceeds from the identities (5.9)-(5.11). But the two cases, U variable, t) constant and 
77 variable, U constant, are not exhaustive. The identities, (4.8)-(4.10) and (5.9)-(5.11), 
permit any function of both Y and t) to be chosen as independent variable and any 
function of both v and t) to be held constant. 

Npw the DE with t) held constant are hopelessly inadequate for a discussion of the 
symmetry axis and its neighbourhood. A limiting procedure in these (U, t)) coordinates 
would be most awkward. A far better procedure is to abandon the (U, @ )  coordinates 
and choose well behaved coordinates such as spheroidal coordinates (x, y ), even though 
the simple Fuchsian character of the equations is destroyed. 

Let us derive the F equation in arbitrary curvilinear coordinates (p, 7) defined by 

p = P ( V ,  t)), 7 = 7(v, 77); = 7), t) = q(P, 7), (7.8) 

with p as independent variable and 7 held constant, and show that it is free of the ‘ R  
singularity’. Later, we shall see that the equation takes an unexpectedly compact form 
in both cases of spheroidal coordinates, namely p = x, T = y and p = y ,  7 = x. 

Start with the identities (4.8)-(4.10) and (5.9)-(5.11). Since 

a a 
rconstant a v  at) 

(2) = v p - + t ) p - ,  

these identities imply 

(7.9a) 

(7.96) 

(A-’ J o ) ~  = -Z( A- ‘IO), (7.9c) 

where 

x = U 4  + q p c ,  y=t)pD, z = u p + t ) p E .  (7.10) 

The formulae below will be more compact with the slight change of notation: 

A i = A - B ,  C1= C -  E, x1 =x-2,  
B i = A + B ,  E i = C + E ,  21 =x+z. (7.11) 

Now equations (7.9) allow the immediate construction of an Appell equation for F: 

[OF,, - 02F]z+@2[FZ- OF’] = 0, (7.12) 

where 

o=x:+ Y’, 
cp = z,(x: + Y’) + YX1, - x1 Y,. 

(7.13) 

(7.14) 

On dividing (7.12) throughout by a@’, differentiating and then factoring out the 
singular integral, there results the third-order linear equation: 

(7.15) 
cp 

This is the required F equation. However, it is by no means obvious that the ‘ R  
singular’ terms cancel out of this equation. The proof is as follows. First, the coefficient 
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of Fpp is well behaved if CP neither vanishes nor is infinite when R = 0. Now, from (7.14), 
(7.10) and (7.11), 

@ = (77,vPp - vp77pp)A iD + v:A :Bi 

+ V:V,(A :El + 2AiBiCi + DA i V  -A 10,) 

+ I/,77:[Bi(C: + D 2 )  + DC1. - CID,, + 2A 1 ClEl + DA 1, - A  iD,] 
+ ?7:[E1(C:+D2)+DCl, - ClD,]. (7.16) 

By direct calculation from (4.1 1)-(4.13), (5.3)-(5.5) and (5.7), we obtain 

AID =477-'(1- v2)-lH1, (7.17a) 

A:B~ =8(i+77)(i-y2)-3(i+77v2)-1[(i- v2)~1-((a:+772a:v2)~2], (7.176) 

A :El + 2A 1B1 C1+ DA 1 ,, -A ID,  

= 477-l Y( 1 - v ~ ) - ~ (  1 + 77v2)-'[3H2H4 + 2( 1 + 7)v2)H1], (7 .17~)  

B~(c: + 02) + Dcl. - c1 D, 

= 2( 1 + v)-l( 1 - v2)-'(  1 + vv2)-'[77-'( 1 - v2)H1 - (U: + u:v2)H2], (7 .174  

2A 1 CiEl + DA 1, -A ID, 

=277-'(1 +v)-l(1- V2)-'(1 i-17v2)-'[-(1-7)v2)H2H4 

+2(1+277+772v2)H1], (7.17e) 

E1(C:+DZ)+DC1, -CID, 

= ~ - ~ ( 1  + ~ ) - ~ v ( l  +77~')-~[-H2H4+2(1+77)Hi]. (7.17f) 
Clearly, all of the terms in R-' and R - 2  have cancelled out and, in general, CP will not 
vanish when R = 0. Second, 

0 = v ~ A  : + 2vP77)7pA 1 Ci + v;(C: + D 2 )  

(7.18) 
- 2 4R 2 vH4 2 a:+(T:v2 - vp-- 

(1 - v 2 ) 2  2 W P  ~ ( 1 - v z ) ( l + 7 ) v 2 ) + ~ ~ ( l + 1 ) ) ( 1 + r ) v z ) ~  

So the terms in R-' cancel out of 0 also and hence the coefficient of F in (7.15) is also 
well behaved. However, 0 may vanish when R = 0, e.g. the cases 77, = 0 such as 
equations (7.3) or (7.6), and also the case of canonical cylindrical coordinates, p = t, 
T = r. But the coefficient of F, in (7.15) is not singular at any of the zeros of 0 since O2 is 
a factor of the numerator (taking B2@ as the common denominator). By (7.13) and 
(7.14) alone, the coefficient of F, may be simplified to 

coefficient of F, 

= -o+@-'[Z:(x:+ Y2)+3z:(Yxlp -xl Y,)+Zl,(XlXl, + YY,) 

-Zi(xiXi,, + YYp,)+2Zi(X:,+ Y~)+(Y$ipp-XipY~)]. (7.19) 

The appropriate boundary conditions for F depend on the curves T(Y, 77) = constant 
in the (v, 77) plane. If these curves cut the equatorial plane v = 0, then the boundary 
conditions may be given there. They are obtained in a straightforward manner from 
(7.9), (4.17), (4.18), (4.16) and (4.1). If the curves T =constant pass out to the 
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asymptotically flat regions, then the boundary conditions may be given there. The 
simple asymptotic behaviour of F 1 ,  F2 and F3 is given in § 8. It is also possible to express 
boundary conditions at the infinite red-shift surfaces, 7) = qo, 77 = v l ,  . . . , with known 
functions. 

In general, the T = constant curves cut the infinite red-shift surfaces, 77 = qo, etc, at 
isolated points in the (v, 77) plane (exception: T = 7). If p = po = p o ( ~ )  is such a point, 
then it is a trivial regular singular point of the DE (7.15) with exponents, - 1,0  and 1. It is 
trivial because the DE for (p -po)F has p = po as an ordinary point. 

Finally, for spheroidal coordinates, the functions 0 and @ take remarkably compact 
forms. If x is the independent variable while y is held constant, then 

If y is the independent variable while x is held constant, then 

2 -2 2 0 = 4 ( 1 - y  ) ~ 2 ,  

@ = -8x(x2 - y2)-’(l - Y ~ ) - ~ H ~ o : .  

(7.20) 

(7.21) 

(7.22) 

(7.23) 

The argument of H2, u1 and g2 is, of course, 77 = ( x 2 -  1)/(1- y 2 ) .  These formulae will 
be most useful in the next two sections. It is worth noting also that 0 and @ take forms 
nearly as compact as these in cylindrical coordinates. 

8. Proof of asymptotic flatness. Physical identification of parameters, m, q and 6 

With the F equation of the last section in spheroidal coordinates, it is now easy to 
determine the behaviour of our solutions in the asymptotically flat outer regions and 
near the symmetry axis. Since both regions involve large 7, it is useful to look at the 
asymptotic forms of the functions, H4,  H2, C T ~ ,  u 2  and A, for large 77. From (3.1), (3.2) 
and (3.3)-(3.6), 

H4 = s2p-2[1 + S 2 q 2 p - 2 7 7 - 1 + $ 8 2 q 2 p - 4 ( - p 2 + S 2 p 2 + 2 6 2 q 2 ) ~ - 2 + .  . .], 
H2 = sqp-l[ 1 + s2p-277-1 + $ 2 p - 4 ( - p 2 +  s 2 p 2  +4s2q2)77-2+. . .], 
(+I = s p - y r 1  +s2q2p-277-1 + $ 2 q 2 p - 4 ( - 3 p 2 + 3 8 2 p 2 + 4 s 2 q 2 ) 7 7 - 2 + .  . . I ,  
g2 =s2qp-2t7 -1 [ i+~p-2 ( -p2+~2p2+2~2q2)77-1+ .  . . I ,  (8.4) 

-$s’p-4(p2-2s2q2)q-2+. . . , ( 8 . 5 )  

(8.1) 

(8.2) 

(8.3) 

A = 1 - 2sp- ’ ,, + 2 s  2p-277 + $sp-3 (  p 2  - 4s2p2 - 6s 2q 2)77 -3’2 

These power series in 7-l or 77-1’2 all converge for 77 > qo. 
Consider the third-order F equation with y as independent variable and x held 

constant. This is equation (7.15) with (p, T ) =  (y, x)  and 0 and @ given by (7.22) and 
(7.23). Now the points where the x =constant curves (x‘ f 1) cut the symmetry axis, 
y = 1, are ordinary points of this DE. This is obvious since 2 

(8.6) 0 + 4s4q2p-4(x2- 1)-2, @ +  -88 5 q 3 p - 5  x(x’- 1)-3, 
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as y 2  + 1 .  The boundary conditions on the equatorial plane, y = 0, are 

F1= A +  A ( 2 ~ ~ : - 2 a z H z x - ' ) y ~  + 0(y4), 

F2 = 2 ~ 7 2 ~  + O(Y 3>, 

F3 = R-'+A-'(2a:+2a~H2~-~)y~+O(y~), 

( 8 . 7 ~ )  

(8.7b) 

( 8 . 7 ~ )  

where the argument of A, a2 and H2 is not ( x 2 -  1 ) / ( 1  - y z )  but x 2 -  1 .  

drastically. It becomes 
Now take x large and neglect terms of O(X-~) or less. The F equation simplifies 

Fyyy + [ 2 p - 2 y ( - 2 p 2 + 2 S 2 p 2 + 3 S 2 q 2 ) F y y  + p - 2 ( - p 2 + S 2 p 2 + 6 S 2 q 2 ) F y ] ~ - 2 + O ( ~ - 4 ) = 0 .  

(8.8) 

The three solutions are 

F1= 1 + 2Sp-'x -' + 28 2 p - 2 ~ - 2  + f ~ 9 p - ~ [  p 2  + 2S2p2 + 3 S2q '( 1 - y 2 ) ] ~ - 3  + O(X -4), 

(8.9a) 

F2 = + O(X-~),  (8.96) 

F3 = 1 - 26p-'x-' + 2 6 2 p - 2 ~ - 2  - + ~ ? p - ~ [ p ~  + 2S2p2 + 3 S 2 q 2 (  1 - y 2 ) ] C 3  + O(X-~ ) .  ( 8 . 9 ~ )  

The terms up to O(X-~ )  in these formulae are precisely the boundary conditions at 
infinity for the F equation with x variable, y constant. Clearly, FI, FZ and F3 exhibit the 
correct asymptotic behaviour for a solution of Ernst's (and hence Einstein's) equations 
which is asymptotically flat and has symmetry axis free of the ubiquitous line singularity. 

From (8.9)' (4.1) and (2.3), asymptotic forms may be written down for U ,  4 and W .  

Convert to the spherical-like coordinates (p, 8 )  defined by (2.7). Also, replace K by m 
according to 

K = mp8-l. (8.10) 

The results are: 

U = - m p - ' + i m 3 ~ - 2 ( 2 ~ 2 q 2 - p 2 ) ( $ ~ ~ ~ 2  . , , (8.11) 

CL = -2m2q cos - 2 m ~ - ~  + . , .I, (8.12) 

w = -2m2q sin2 e(p-l+ mp-2+. , .). (8.13) 

Comparing with equations (2.  lo) ,  we discover the following physical identifications for 
the parameters, m, q and 8 :  

mass of source = m, ( 8 . 1 4 ~ )  

angular momentum, J = m2q, 

quadrupole, Q = m 3 [ q 2 + i p 2 ( 1  - l/S2)]. 

(8.14b) 

( 8 . 1 4 ~ )  

(8.10) and (8.14) are in direct agreement with TS (1973). (At this stage, the additive 
constant 2 ~ S q p - I  in formula (4.19), which occurs also in (4.20) and (6.5), may be 
verified by considering equation (4.20) or (6.5) for large x or p. )  
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9. Simple closed formulae on symmetry axis 

We know already that the solution is well behaved on the symmetry axis because FI, F2 

and F3 are analytic functions of y at y = *l, for x > 1, and have the correct asymptotic 
forms. But the metric and Ernst potentials actually take very simple functional forms 
on the symmetry axis. 

Consider the F equation with x as independent variable and y constant. The 
equation is (7.15) with (p, T)=(x,  y )  and 0 and given by (7.20) and (7.21). The 
boundary conditions at x = 03 are given by equations (8.9). 

Next, restrict attention to the symmetry axis. There y is constant, in fact y = *l, and 
x varies along it. As y + * 1, 

0+4S2p-2(x2- 1)-2, @ +  *8S3qp-3(x2 - l>-3. (9.1) 

Hence the F equation simplifies to 

6x 6x2-2.-4S2 
F x x x  +r F x x +  x -1 (x*-l)’ Fx = 0. (9.2) 

This is of hypergeometric type but may be integrated with elementary functions since 
x = 03 is an ordinary point. The solutions satisfying the boundary conditions (8.9) with 
y = k1 are 

x - 1 6  x + l 6  
F 2 = * 4 [ ( x + 1 )  2P +(-) x - 1  -21, 

F3 = 7 2P [ (1 + P )( x) + (1 - P )( -) x - 1  - 2q 2 1 .  
1 x - 1  6 x + l  6 

(9.3) 

(9.4) 

(9.5) 

The formulae (9.3)-(9.5) and many similar formulae take more convenient forms 
using the coordinate 

6 = ln[(l+ v ) / ( l -  .>I = ln[(x + Y >/(x - Y )I 
which when y = *1 becomes 

6 = *ln[(x + l) /(x - l)]. 

Considering y = +1 only, exact expressions for the metric and Ernst potentials and 
some other functions and some of their normal derivatives on the symmetry axis are: 

(9.6) 

(9.7) 

e’” = p2(cosh Sf + p  sinh S[ -q’)-l, 

4 = -2q sinh’ $[(cosh Sf + p  sinh 65 - q’)-l, 

8 = (e2-2iq sinh’&)(cosh S f + p  sinh 6f-q2)-’ 

= ( p 2  + 2iq sinh’ &)-‘(cosh Sf -p  sinh Sf - q’), 

( 9 . 8 ~ )  

(9.86) 
5 = p coth $Sf - iq, (9.9) 
lim (1 - y 2 ) - ’ o  = -~Sqp-~(cosh  86 + p  sinh 85- l), (9.10) 
Y - r l  
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2 2 -Zsinh2tf cosh Sl + p sinh Sl - 1 
cosh S [ + p  sinh 6l-q" 

sinh Sl + p  cosh S[ 
(cosh Sf + p sinh Sl - q2)2 ' 

uY=S 4 P 

& = -2S2pq sinh'il 

(9.11) 

(9.12) 

e2' = I, (9.13) 

p sinh S l + p  cosh S l  p q e*'+ 1 -p  
l + q  coshS[+psinhS[-q l + q  qe* ' - l+p '  

=- MO =- 

- 4(1 -p)(l  - q)  e'' Io = W - 4 )  - 
cosh S[ + p  sinh S[ - q (q e'' - 1 +p)' 

q qe*'-I-p 
1 + p  q e*' - 1 + p  ' 

=- q cosh 66- 1 
Jo = 

cosh S l  + p  sinh Sl - q 

K1 =cosh&+p-l(l-eiq)sinh &, 
K2=.~ i  cosh$Sl-cip-l(l+riq)sinh$S[. 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 

(a/ay implies that x is held constant.) 
These and many other similar formulae are very easy to derive. For S = 1 ,2 ,3 ,4 ,  

they are in agreement with the results of Tomimatsu and Sat0 (1973). Formula (9.14) 
with 6 = 1 and formulae (9.17) and (9.18) with S = 1 , 2 , 3  also agree, respectively, with 
(4.22) and the tabulated forms of K1 and K2 in the appendix when y = 1. The 
corresponding formulae for non-zero NUT parameter are just as easily derived. 

10. Series solutions for the HS and K equations 

In this section, we shall investigate methods of solving the two differential equations, 
introduced in 0 3, for H4 and K, and discuss some of the properties of their solutions. 
Since for S not an integer, the solutions involved are unfamiliar transcendental 
functions, we consider series solutions whose convergence is quite rapid, even in the 
highly curved inner regions not too close to the singular surface 77 = 0 (or x = 1). These 
methods are applied in 0 11 to the cases when S is an integer to give very efficient 
methods of calculating the rational function solutions exactly. 

1 U. 1. The H4 and r equations 

The second-order second-degree equation (3.1) for H4 is analogous to an Appell 
equation. If (3.1) is differentiated, a factor H i  giving rise to three singular integrals can 
be removed leaving the third-order first-degree equation: 

7 2( 1 + T ) ~ H Y  + 77 (1 + T)( 1 + 277)HqN + 677 (1 + 77)Hi2 

- 4( 1 + 277)H4Hk + 2 H i  + 4S277Hi - 2S2H4 = 0. (10.1) 

This equation, though still non-linear, has many advantages over (3.1). (Note: the 
singular integrals of (3.1) and (3.14) give rise to a class of static Weyl metrics which 
contains the Zipoy-Voorhees metrics.) The boundary condition (3.2), when applied to 
(lO.l), still uniquely determines the one-parameter family (for fixed S )  of solutions. 
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One method of solving equation (lO.l), though not the most powerful, is to seek 

H4=S2p-2+a177-1+a277-2+. . . , (10.2a) 

power series of the form, 

or 

H4=S2p-2+61(1+77)-1+b2(1+77)-2+. . . . (10.26) 

The method is straightforward, so details will not be given. The series ( 1 0 . 2 ~ )  and 
(10.2b)converge outside circles, centres 77 = 0 and 77 = -1, respectively, in the complex 
77 plane, These circles are the smallest such that H4 is analytic everywhere outside them 
and must have at least one singularity on their boundaries. It is shown at the end of this 
subsection that the only singularities of H4 are branch-points at r ]  = 0 and 77 = -1, 
requiring the 77 plane to be cut from 77 = 0 to 7 = - 1, and simple poles corresponding to 
the zeros of r. In general, the circle of convergence has radius unity or passes through 
the real simple pole 7 = qo, representing the outermost infinite red-shift surface. In the 
latter case, the rate of convergence is comparable to a geometric series with common 
ratio q 0 / ~  or (1 + ~ ~ ) / ( 1 +  v ) ,  respectively. Similar series expansions may be con- 
structed for the function r, singular only at 77 = 0 and 7) = -1, using the DE (10.5), 
below. Though the recurrence relations for the coefficients are qualitatively similar to 
those for H4, they are more cumbersome. 

A second method of solving (3.1), which we shall describe in detail, is much more 
powerful and elegant. It is a perturbation expansion of the function r(7) in ascending 
powers of q2p-’ which is by no means restricted to small q and is valid in the highly 
curved regions not too close to the singular surfaces 77 = 0 or 7) = - 1.  Two advantages in 
the use of r(7) rather than H4(77) are that is analytic for all 77 except 7 = 0 and 77 = - 1 
where it has branch-point singularities (6 # integer) and reduces to a polynomial in 1/77 
when S is an integer. 

From the definition (3.7) for r, 
~ ~ = ~ ~ + ~ ( i + ~ ) r ’ / r .  (10.3) 

The two DE for H4, (3.1) and (lO.l), may now be converted to homogeneous DE for I‘, 
one third order and second degree, the other fourth order and first degree. They are: 

7 7 2 ( 1  + ,-, ) 2 ( r 2 y 2  - 6 r r ‘ y y +  4 ~ 3 ~  - 3rrzyz + 4 r p 3 )  

+4? ( i  +,-,)(I +277)(r2rr-rr’r2+r3r-rr2r) 
+ 4 ( i  + 2 ~ ) 2 ( r 2 r 2 - r r 2 r ) + 4 7 7 ( i  + 7 7 ) ( r z r r - 2 r r 2 r + r f 4 )  

+ 4 ( i  +277)(2r2rr-rr’3)+4r2rr2-4~2[(i + v ) ( r 2 r 2 - 2 r r r 2 r r r + r ’ 4 )  

+(277-1+3)(r2rr-rrr3)+77-2(i +277)r2r2]  = 0,  (10.4) 
+ 77)2(rr(iv)- 4 r ‘ r  + 3 r 2 ) +  477(1 + 77 )(I + 2 7 7 ) ( r r -  rP) 

+ [2 + 1477 + 14772-462(1 + 77)]rr+[-477(i + 7 7 ) + 4 ~ 2 ( 1  + 77)]r12 
+[2+477 -~~(4~-~+6)] r r ’=o .  (10.5) 

Very similar DE can be written down for q6’r. The boundary condition for r a t  77 = 00 is 

r(77)= 1 - ~ ~ ~ ~ ~ - ~ ~ - 1 + 0 ( ~ - 2 )  as 7 +00. (10.6) 



New exact stationary axisymmetric solutions 1509 

We shall regard r as a function of two arguments, q and q 2 ,  and write 

Now express r in the form of a power series in 

(10.7) 

We shall find that all the coefficients, To, rl, r2, . . . , can be expressed in terms of known 
functions and quadratures, though the recurrence relation is rather complicated. 

Consideration of the series (10.2) shows that 

F0(77)= 1 (exactly), 

rl(q)= - S ~ ~ - ~ + O ( ~ - ~ ) ,  

r&) = o ( T - ~ ) ,  (at least), n 2 2 .  

(10.8a) 

(10.8c) 

(10.8b) 

These conditions uniquely determine the coefficients in (10.7). Now, differential 
equations for rl(q) may be obtained by substituting the series (10.7) into (10.4) and 
(10.5) and looking at the coefficients of q4p-4 in (10.4) and q 2 p - 2  in (10.5). Actually, 
the general solution of these DE, not just that one obeying (10.86), is most important. 
The result will therefore be expressed as follows: 

is a particular solution of both of the DE, 

[q(1 + q ) v ” +  2(1+ 2 q ) u ’ +  2Ul2 

=4S2[(1+q)v‘2+(277-1+3)vv’+q-2(1+277)v2], (10.10) 

(10.1 1) 

q2(1+ q ) 2 ~ ” ’ + 4 q ( 1  + ~ ) ( 1 +  2 q ) ~ ” +  [2 + 1477 + 14q2 -4a2(1 + v) ]u‘  
+[2+4q  -S2(47-1+6)]~  = 0. 

(10.10) is an Appell(l889) equation and (10.11) is a linear Fuchsian equation but not of 
the 3F2 hypergeometric type. If (10.1O)is multiplied throughout by q2(1 + q)2 and then 
differentiated, a singular integral may be factored out leaving the linear equation 

The three linearly independent solutions of (10.1 1) are the foundation stones upon 
which the whole series (10.7) is constructed. To solve ( lO. l l ) ,  convert the Appell 
equation (10.10) into a second-order linear equation (for the general algorithm, see 
Cosgrove 1977a). Thus 

(10.1 1). 

= ~ ~ ~ ( 1  +q)w~2--s4q-1w2 (10.12) 

where 

w =o .  1 + 2 q  S 2  
W ” + P  

d 1 + d W ‘ - f 2 ( 1 + 1 7 )  
The boundary condition (10.8b) requires 

(10.13) 

w = q - l  + O(77 - 2 )  as q +CO.  (10.14) 
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Now (10.13) is of hypergeometric type. It has general solution, 

w = c 1 W + c 2 W  (10.15) 

where 

W=&F1(l+S, 1-S;2 ;  -7p) 
=+S-’(P6(1 +277-1)-P*-1(1 +277-l)), 

w* = -S(Q6 (1 + 277-l)- Qa-i( 1 + 277-l))- 

( 1 0 . 1 6 ~ )  

(10.166) 

(10.17) 

The functions, p6(p)  and Q6(p),  are Legendre functions of order S.  Q 6 ( p )  is the 
Legendre function of the second kind. p6(p) is the Legendre function given by 
Murphy’s formula and is uniquely defined by requiring it to be analytic at p = 1 and 
p6( l )=  1. If S is an integer, this is the usual Legendre polynomial, P6(~). If S is not an 
integer, it is related to the Legendre function of the first kind, Pg(p), as usually defined, 
by 

I%(cL) = P&)+ T-’ tan(S.rr)Q& ). 

The particular solution, w = W, corresponds to the boundary condition (10.14). If S 
is an integer, this is a polynomial in 77-l of degree S .  If S is not an integer, it is analytic 
(simple zero) at 77 = 03, but has logarithmic branch-points at 77 = 0 and 77 = -1. w* has 
a logarithmic branch-point at 77 = 03. W and W* satisfy the important identity, 

”- W*w’=?p(l+q)-*. (10.18) 

From (10.12) and (10.15), the general solution of (10.10) is 

U = c:v+2clc2v* + c : v * *  

v = ~ ~ ~ ( 1 + ~ ) w ~ - ~ ~ ~ - ~  w2, 

v* = S2Q( 1 + 77) W’W*’- S477 - I  ww*, 
v** = ~ ~ ~ ( 1 +  77)w*’2 - s4,-,-l v2. 

where 

(10.19) 

(1 0.20) 

(10.21u) 

(10.2 1 b) 

These are the three linearly independent solutions of (10.11). rl(77) is given explicitly 
by 

m 

r1(77)=-/ V(il)dij (10.22a) 

1+2q-1 

= +a I, (Ijs(CLL)Pb-1(CL)-p6-1(CL)Pb(CL)) dF. (10.226) 

This guadrature cannot be expressed as a simple quadratic function of W and W’ or p6 
and PA. If 6 is an integer, Tl(T) is a polynomial in 77-l of degree 26 - 1. 

The problem of finding r2(77), r3(q), . . . is more complicated. We shall outline the 
general algorithm for finding Tn(q) in terms of rl, r2,. . . , I’n-l. The recurrence 
formula involves only quadratures and will be expressed in a form free of the unwanted 
Legendre function of the second kind or, equivalently, W .  As an illustration, r~(77) 
will be obtained explicitly. 
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Substitute the series (10.7) into (10.4) and (10.5). The coefficients of 46p-6 in 
(10.4) and of q4pw4 in (10.5) give the following inhomogeneous DE for r2: 
.u[r;]= [,-,'(I + 7 7 ) 2 ~ + 2 7 7 ( 1  +?)(I +277)v'+277(1 +77)vlr; 

+[277(1+77)(1+277)1/"'+4(1 +277)2v-4S2(1 +~)V '+4(1+277)V 

- 2S2(277-' + 3) + [ 277 (1 + 77) V" + 4( 1 + 27)) V' 

- 2 ~ ' ( 2 ~ - '  + 3)v '  + 4 v- 4 ~ ~ ~ - ~ ( i  + 2 7 7 ) ~ r ;  

= 77 2( 1 + 77)73 vv V" - 2 v'3] + 277 (1 + 7))( 1 + 277)[ vv'2 + v2 vf'] 
+ [2 + 1277 + 12772-4~2(1  + 77)] V2V'+ [2(1+ 277)- 2 8 7 2 7 7  + 3)] v3 ,  

(10.23) 
2 (iv) ~ [ r ; ]  = q2( i  + 77) r2 +47(1+ ~ ) ( i  + 277)ry + [2 + 1477 + 1 4 ~  - 4 6 7  1 + 77)]r; 

+ [ 2 + 4 ~  -S2(477-l +6)]r; 

= $(1 +r/)2[4VV"-3v2]+4T-/(1+~)(1 +277)VV' 

+ [477(1 + 7 7 ) - 4 ~ 2 ( 1  +77)] v2. (10.24) 

(10.24) is an inhomogeneous version of the DE (10.11) which has solutions, V, v* and 
v**. (10.23) is a linear equation of the second order for ri and must be a particular first 
integral of (10.24). 

Similarly, the differential equations for r, take the form, 

(10.25) 

(10.26) 

F,(q) is a homogeneous quadratic polynomial in rl, r2, . . . , rn-' and their derivatives 
up to the fourth order. G n ( ~ )  is a quartic ( n  2 3 )  polynomial in rl, r2,. . . , Tn-l and 
their derivatives up to the third order. For n 2 3, F, and G, are not expressible directly 
as polynomials in V and its derivatives, but must involve the quadrature sign. (10 .8~)  
expresses the boundary condition for r,. In actual fact, however, r, starts with the 
power q-"*. 

We shall not solve equations (10.25) and (10.26) by the standard variation of 
parameters algorithm. Instead, we shall give integrating factors so that the order of the 
DE can be reduced by taking quadratures. This has the advantage of avoiding the 
appearance of v* and v** (or, equivalently, w* or Qs) in the final formulae. First, note 
the relationship between (10.25) and (10.26): 

(d/d77)[772(1 +77)2Gn(77)1 

= [ 77 '( 1 + 77 )' V" + 2 q ( 1 + T ) (  1 + 2 77 ) V' + 277 (1 + 77 ) V]F, (77 ). (1 0.27) 

If G, and F, are replaced by &[rL] and N[TL), respectively, then (10.27) is identically 
satisfied by rL. Now let 

A =  Vv*'- v*V'=S677-1(1+77)-1u/wI 

= -$a2?-/ - I (  1 + q)-l[ 77 (1 + 77) V" + 2( 1 + 277) V' + 2 VI, (1 0.28) 

where (lO.lO), (lO.ll), (10.13) and (10.18) have been used. Now q2(1+77)2A is an 
integratingfactor for the DE (10.26). Hence, making use of the relationship (10.27)and 
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identifying the constant of integration by (10.8c), we obtain the first integral of (10.26) 
in the form 

(10.29) 

Now the homogeneous equation & [ V I  = 0 has linearly independent solutions, U = V 
and U = V* but not U = V**. So an integrating factor for (10.29) is AP2V. Hence, 
taking the integral with appropriate constant of integration yields 

Wfl- vtrl ,, = L  2 8  2 A [Tmij-2(l +ij)-2A-2(ij)V(ij)G,({)  dij. 
n (10.30) 

It is now straightforward to obtain r, explicitly by two more quadratures. 

side of equation (10.23). In terms of W, it is 
As an illustration of this formula, consider the case n = 2. G2(77) is the right-hand 

G2(77)= 2Si477-3v+ 2S'277-2(1 - 77) W5 W'-2S1O[ 1 + S2(1 + 77-l)] W'W' 

-2aio(1 + 77)(2 + 7 7 ) ~ 3 W 3 + 2 ~ 8 7 7 ( 1  + 77)2(77 - s 2 ) w 2  wt4 

+ 2 ~ ~ ~ ~ ( 1 + ~ ) ~ ( 1  + 2 7 7 ) ~ ~ 5 + 2 ~ 8 7 7 3 ( 1  + 7 7 ) 3 ~ 1 6 .  (10.31) 

The integrand of (10.30) involves fractions but these can easily be removed by 
integrating by parts. Remaining in the integrand is a homogeneous quartic polynomial 
in Wand W'. It is not possible to express the integral of this as a quartic polynomial of 
the same type, but it can be simplified to a single term by integrating by parts with the aid 
of (10.13). The result is 

vr; - vr; = v3 - ss w" w 2  - s~~ 2(i + 77 l2 w2 W 4  

-4SS77-'(1 + q)-l W W  G ( l +  f ) ( 2  + {)[ W({>W({)l2 dij. (10.32) L- 
There is no point in carrying out the next two quadratures as the final formulae do not 
simplify. If 6 is an integer, r2(77) is a polynomial in 77-l of degree 48 -4  with lowest 
power 77-4. 

Now, (10.30) is a very complicated recurrence relation for the coefficients r, of the 
series (10.7). For n > 2 and S not a small positive integer, calculation of r, is extremely 
laborious. But, for 77 not too small, convergence is extremely rapid. This follows from 

r,(7))= knrl-f12+o(77-nz-1) asq- ,m,  (10.33) 

where the coefficient k, is given by the quite remarkable formula: 

S " ( S 2 -  l)n-1(S2-4)"-2(S2-9)n-3,, , [ S 2 - ( n  k, = (-l),( 
~ n ( ~ 2 - l ) " - ' ( n 2 - 4 ) " - 2 ( n 2 - 9 ) n - 3 , .  . [n2-(n-1)2] 

For n x 6, k ,  has asymptotic formula: 

(10.34) 

where +(a) depends on S only. 
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Actually, the series (10.7) converges for all finite real and complex values of q 2 p P 2  
uniformly with respect to 7 in the complex 7 plane with an open neighbourhood of the 
line segment from 7 = -1 to 7 = 0 removed. Since (10.7) is a power series in q 2 p - 2 ,  
then convergence for q 2 p - 2  = -1 implies absolute and uniform (with respect to 7) 
convergence for all complex values of q 2 p - 2  in the circle 1q2p-2/ < 1. The case q2p-’ = 
-1 (i.e. the limit q 2  + 00) may be summed explicitly: 

(10.36) 

This interesting formula is a particular case of the very useful identity, 

UT,  4% (1 + i/7)”r(-i -7, i /q2) ,  (10.37) 

which is easily proved by direct substitution into (10.4) or (10.5) and the boundary 
condition (10.6). But now, since r(7, q 2 )  is an analytic function of q 2 p - *  for 142p-21 < 1 
and 7 not on the cut from -1 to 0, then (10.37) shows that the region of analyticity may 
be moved to the circle 1q2p-2 + 11 < 1. But then r(7, q 2 )  must be an analytic function of 
q 2 p - 2  for 1q2p-2] < 2  because of the form of (10.7). Repeating this argument, it is seen 
that r(7, q2)  is an analytic function of q 2 p P 2  for all finite complex values of q 2 p - 2  and an 
analytic function of 7 in the complex 7 plane (including 7 = CO) cut from - 1 to 0. Note 
also that (10.37) is useful in the calculation of r for large q. 

10.2. The K, L and F equations 

In this subsection, 7 is treated as a constant parameter. We shall assume that the values 
of H4, H2, g1 and m2 for the particular 7 under consideration are known. 

The differential equation (3.8) for K = K(‘)(v, 7) is a linear Fuchsian equation with 
five regular singular points. They occur at v = 1, -1, i7-1’2, -i7-1’2 and -Eia2(7a1)-’. 
v = CO is an ordinary point. Thus it is one step more complicated than Heun’s equation 

(Hem 1889, Snow 1952, Sleeman 1969). The Riemann P-diagram for this equation is 

1 -1 i 7 - 1 / 2  - i P 2  - ei(+2(7(+1)-1 
K = P  -38 -I8 0 0 0 (10.38) 

In the classification of Ince (1927), this equation is of type [2, 3,0], meaning it has two 
elementary singularities (exponent difference = i), three regular singularities (exponent 
difference #i) and no irregular singularities. 

The fifth regular singular point is interesting. The exponent difference is 2, an 
integer, but it is easy to show that both linearly independent solutions are free of 
logarithms at that point. Such a regular singularity is known as an ‘apparent’ singularity 
(see Ince 1927). Any Heun equation with an ‘apparent’ singularity may have that 
singularity removed so that the general solution is expressible in terms of hypergeomet- 
ric functions (see Cosgrove 1977b). However, there does not appear to be a similar 
algorithm which will reduce a Fuchsian equation with five regular singularities, one 
‘apparent’, and one arbitrary accessory parameter, such as (3.8), to a Heun equation, 

Solution of equation (3.8) is accomplished by the well known method of power 
series. It is not necessary to give details of this method here because it may be found in 
any textbook on differential equations. Power series in v - vo involve five-term 
recurrence relations if vo is one of the regular singular points and six-term recurrence 
relations otherwise. Further, power series in (v - vo) / (v  - V I )  may be constructed and 

2 1 1 II $8 5 2 
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involve four-term, five-term or six-term recurrence relations depending, respectively, 
on whether both, one or none of vo and v1 are singular points. Unfortunately, the most 
important case, vo = 0 where the boundary conditions (3.9) are directly applicable, is an 
ordinary point. The regions of convergence in the complex v plane for such series are 
the interiors or exteriors of circles and contain no ‘non-apparent’ singularities apart 
from vo itself. For example, when 77 > 1, the power series in v converges for -77-l” < 
(rea1)v < 77-l”; i.e. convergence is restricted to the region, 0 s  y 2  < x 2 / ( 2 x 2  - l), x > 1 .  
This difficulty may be avoided in the upper half space, y > O ,  by considering power 
series in v/(v - vl), where -2/(77 - 1 ) s  vl < 0, and similarly in the lower half space, 
y < 0, with 0 < v1 s 2/(77 - 1). 

The K equation has several drawbacks. First, power series in v or v/(v - vl) require, 
in general, six-term recurrence relations rather than the optimum four. Second, the 
region of convergence of any one series does not cover the entire region of interest, 
x > 1, -1 < y < 1 (for y = *l, see 8 9). Third, the singularity at v = - E i ~ ~ ( 7 7 ( ~ ~ ) - ’  is a 
fairly innocuous manifestation of the ‘ R  singularity’ but does interfere, to some extent, 
in discussion of the asymptotically flat outer regions. Fourth, the equation conceals the 
symmetry property evident in equations (3.1 la ,  b) and (3.12). This last symmetry 
property may be exploited to choose a new dependent variable. There is much freedom 
here, but the following eight choices seem to be optimum. Let E = *l,  e2 = *l, e3 = i1 
independently and write 

(1  0.3 9) 

For K = K ,  or KZ, L is either an even or an odd function of v. The DE for L is in 
independent variable p = v2  and is 

1 77 1 (1 + d ( U :  + 772u:p) ) Lw + E- 4p(1- pI2(1+ ~ p )  (2: p - 1  1 + ~ p  p - k  
Lww+ -+-+--- 

where 

This DE is of Ince type [ 3 , 2 , 0 ] .  Its Riemann P-diagram is 

0 1 -7-l k ( V )  
1 

2 1 1  1 
2 2 ; s  z 

(10.40) 

(10.41) 

(1 0.42) 

The quadratic transformation, p = v2,  caused elementary singularities to appear at 
p = 0, 00. The regular singularity at p = k is again ‘apparent’. If this singularity were 
absent, the DE would be equivalent to LamC’s equation (see, e.g., Arscott 1964). Thus 
L is qualitatively very similar to a well known special function, LamC’s function, but the 
recurrence formula for the power series in p has four terms rather than three. Power 
series in p/(1+ v p )  require the optimum four-term recurrence relations and converge 
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rapidly throughout the region, x > 1, -1 < y < 1, except near the poles, x = 1, y = *l, of 
the singular surface, x = 1. Note also that (10.40) is manifestly free of the 'R 
singularity'. 

The inverse of equation (10.39) is 

(10.43) 

where 1 = l(7) is the denominator of k(7) in the expression (10.41). The boundary 
conditions on L are most conveniently expressed in the following way. If 

( 1 0 . 4 4 ~ )  L = a o + a l k  + a 2 k 2 + .  . . , 
then, from (10.43), 

+a&' if e3 = + l  
if e3 = -1. - &iao K? ) 

K'" = 

If 
L = k 1 / 2 ( b o + b l p + b 2 p 2 + .  ..), 

then 
tboKf '  i f g 3 = + l  
;E i bo Kj" if c3 = -1. 

klK'" = { 

(10.44b) 

( 1 0 . 4 5 ~ )  

(10.45b) 

These results, together with (4.2), allow the Ernst potentials to be calculated. 
On the infinite red-shift surfaces, six of the eight L''3'2*f3) reduce to Lam6 functions, 

being related in a very simple way to the function K satisfying (4.26). The two cases, 
E = *l ,  c2 = €3 = -1, are different and give rise to different Fuchsian equations, types 
[2 ,4 ,0 ]  in v or [3 ,2,0]  in p. 

A disadvantage with the use of L is that the relationship to the Ernst potentials is 
somewhat remote. Here, the F equation, (7.3) or (7.6), is most attractive. The Riemann 
P-diagram for (7.6) is 

( 0  CO 1 -7-1 e ( 7 )  'i 
F = P  (1 0.46) 

= e  is an 'apparent' singularity which causes no trouble. Some of the other exponents 
differ by unity but do not give rise to logarithmic solutions. Power series in cc. and 
k/( l+ 7 ~ )  involve five-term recurrence relations, the latter converging throughout the 
region, x > 1, -1 < y < 1, as for the function L. 

11. The cases when S is an integer: Tomimatsu-Sat0 solutions 

The methods of the previous section allow us to construct the rational function cases, 6 
an integer. The polynomials r(q, 9') have so many remarkable symmetry properties 
that they are worthy of study in their own right by pure mathematicians. The symmetry 
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properties are also important because, with their aid, we can greatly reduce the number 
of applications of the recurrence formula (10.30). Many of the properties of these 
polynomials are given without proof. 

In this section, in preference to r(q, 4 2 ) ,  it is convenient to use 

(11.1) 2 - 26 6 2  
f(77, 4 > = P  77 n ? , 4 2 )  

which is a polynomial in q of degree 6' and in q 2  of degree S. 
Consider, first, the K or L equation when S is an integer. A glance at the Riemann 

P-diagrams, (10.38) and (10.42), shows that the regular singularities at ,U = v' = 1 have 
exponent difference S, an integer. But no logarithms occur in the solutions at p = v2  = 1 
(see, for example, the tabulated forms of K1 and K 2  for S = 1 , 2 , 3  in the appendix). In 
fact, the general solution of (3.8) takes the form: 

K = (1 - v2)-'* (polynomial in v of degree 8 )  

+(1- v2)-"(l + 7 ) ~ ~ ) ~ "  (polynomial in v of degree S - 1). (11.2) 

But the freedom from logarithms condition at p = v 2  = 1 is not satisfied identically by 
the parameters in (3.8) but leads to a new relation among H4, H2,  g1 and u2. This may 
be re-arranged to form a first-order DE for H4 whose form depends on S. This DE is a 
first integral of the second-order H4 equation (3.1) and is precisely that unique first 
integral which admits the boundary condition (3.2). 

For S = 1 (Kerr solution), the condition that the K and L equations are free of 
logarithms at p = v2  = 1 may be reduced to 

q( l+q)H;+H4(H4-  1)=0 .  (11.3) 

This is a Bernoulli equation for H4 which may be readily integrated to give H4= 
~ ( q p ' - q ~ ) - ~ .  Changing dependent variable to f by (10.3) and (11.1) gives the simple 
linear equation, 

p=o. (11.4) 

For S = 2, the freedom from logarithms condition is 

(11.5) 

In terms of f ,  this equation becomes an Appell equation, 

772(1+t7)2Tlr2-4~(1 +77)(1+277)PT"+4(3$+377 + l ) f P +  1277(1 +q)T'' 

-12(1+2?7)TT'=O. (11.6) 

On dividing (11.6) throughout by v2(1 + v)', then differentiating and factoring out the 
singular integral, there results 

77 (1 + r/)P - 2( 1 + 277)P' + 6T' = 0. (11.7) 

This equation is of hypergeometric type and is easily solved to give the quartic 
polynomial tabulated in the appendix (equation (A.2)). 
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Now write 
2 - 2 6 F  26-4 4- T(77, ) - p  o(77)+p26-242r1(77)+~ 4 r2(77)+. . .+P2426-2T6-l(77)f426~6(77) 

(11.8) 

so that 

f o ( q ) =  ? ? 6 2 ,  f a ( ? ) =  (-1)6, T h ) =  77S2rn(77). 
Notice that the two linearly independent solutions of (1 1.4) are To(??) and T 1 ( ~ )  and that 
the three linearly independent solutions of (11.7) are TO(q), f l (v )  and r 2 ( ~ ) .  This 
pattern continues. The freedom from logarithms condition leads to a second-order DE 
for i= which is a generalisation of Appell's equation in the sense that the general solution 
takes the form (11.8) with p 2  and 4 2  regarded as independent. By successive 
differentiation and removal of singular integrals, a linear equation of order S + 1 may be 
obtained. This equation has r o (~ ) ,  F1(v), . . . , Fg(77) as linearly independent solutions. 
The case 6 = 3 is given by 

77 2( 1 + 77)2r(iv)- 877 (1 + v)( 1 + 2 ?)P + 14( 1 + 7 7 + 777 2)P' - 1 12( 1 + 277 )P = 0. (1 1.9) 

For all S 2 2, these linear equations are of Fuchsian type with exactly three regular 
singular points occurring at 77 = 0, - 1 and a, but, except for 6 = 2, they are not of the 
generalised hypergeometric type. 

The DE (1 1,4), (1 1.7), (1 1.9), etc, may be obtained with much less labour directly 
from their Riemann P-diagrams because the exponents at the singular points obey an 
amazingly simple rule. The Riemann P-diagram is 

1 0 -1 a 
0 0 - S 2  

(11.10) 

This diagram does not quite uniquely determine the linear equation of order S + 1 for T 
because of arbitrary accessory parameters (see, e.g., Ince 1927). But more than enough 
information is available when the highest and lowest powers of 7) in the polynomials, 
TAT), n = 0, 1, . . . , 6, are known. They follow the very simple pattern: 

T,(7)= k,$2-"2+. * .+l,7+6-n)2, (1 1 . 1 1 )  

yhere k, is given by (10.34) and 1, = (-l)'kS-,. 

simple symmetry property, 
A glance at the tabulated forms of T in the appendix for S = 1 , 2 , 3 , 4 , 5  reveals the 

(1  1.12) 6 8 2 -  
u77, s2)= (-1) 77 W/% $1. 

This is equivalent to 'rule (c)' of Tomimatsu and Sat0 (1973). It is, however, true only 
for the cases when S is an integer. If S is not an integer, the right-hand side of (11.12) 
satisfies the DE for T but not the boundary condition (7.6). Another symmetry property, 
true for all S, is given by (10.37). It may be written 

(1 1.13) f(7, q 2 ) = q 2 T ( - 1  -77, 1/q2). 
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(1 1.12) and (1 1.13) lead to three more symmetries for the cases when S is an integer: 

( 1 1 . 1 4 ~ )  

(1 1.146) 

(1 1 . 1 4 4  

The last of these is a manifestation of the identity, P 6 ( - p ) =  (-1)'P6(p), for Legendre 
polynomials (recall that CL = 1 +2/77 in equations (10,166) and (10.226)). These 
symmetries form a finite group of order 6. 

These symmetries lead to useful identities among the coefficients of (1 1.8). (1 1.12) 
gives 

(11.15) 

By expanding both sides of (11.13) and comparing coefficients of powers of l /p2 ,  we 
obtain a sequence of identities. The first, second and (n + 1)th of these are 

6 26 62-  
f(7, 4 2 ) =  (-1) p 7 U-1 - 1/77, UP2), 

f(7, q ' ) ~ q * ~ ( 1  +~) '*f(--1/(1+7),  - P 2 / q 2 ) ,  

r(7, 4 2 ) =  (-l)6p26(1 + ??)62f(-7/(1 +q), - 4 2 / p 2 ) .  

6 62-  ~ , ( ~ ) = ( - i )  7 rS-,(i/t7). 

(1 + r / y 2 =  7762-f1(77)+f2(77)- .  . . + (-l)6-1f6-l(7)+ 1, (1 1.16) 

(- 1)'F1(- 1 - 77) -f1(7)+ 2f2(77) - 3f3(7) + . . . + (- 1)'-'(6 - 1)f6-1(7) + 6, (1 1.17) 

(- l ) T n ( -  1 - 7) = (- l)"T"(7)) + ,+'C, (- 1)n+Tfl+1(q) + "+2cn (- 1)"+2f,+2(77) + . . . 
+ 6--'c,(-1)*-1r,-,(~)+ *c,, (11.18) 

where 'C, is the binomial coefficient r ! / ( r  - n)! n!. 
Now the most efficient method of calculating the polynomials T,,(7) in (1 1.8) makes 

use of the identities, (11.15)and (11.16)-(11.18), the form ( l l . l l ) ,  the explicit formula 
(10.22) for rl = T - ~ ~ T ~  and the recurrence relation (10.30) used as few times as 
possible. To calculate T(q ,4* )  for a particular 6, first decide by trial and error the 
integer n (roughly, n =;(a- 1)s  3 0.216) with the following property. Consider 
the 8 -2n - 1 polynomials, fncl, fnc2,. . . , r6-,-1. (11.11) allows several of these 
polynomials to contain the same power of 7. Let m be the largest number of these 
polynomials which contain the same power of 77. Then make 2n + 1 2 m with 2n + 1 as 
close as possible to m. It is sufficient now to compute T1, T2, . . . , f, from the recurrence 
relation (10.30). Then only F,+1, T n + 2 ,  . . . , f i 6  or fb(6-1)remain to be determined. Let 
these be polynomials with undetermined coefficients subject to the restrictions (1 1.11). 
Next, substitute into the first n + 1 of the sequence of identities (1 1.16)-( 11.18). These 
identities will furnish enough equations to determine all of the unknown coefficients. 
Indeed, in most cases, some of the coefficients are overdetermined and, if m is even, 
they all are. So the method also provides a way of checking for errors in the expressions 
found for T I , .  . . , r,,. 

If f1(7) only is computed from (10.22), then r(q, q2)can be fully constructed by the 
above method for 1 s 6 C 7. If rl(q) and F 2 ( q )  are computed from (10.22) and (10.32), 
then r(7, 4*) can be constructed for 1 S 6 S 12. At this stage, the polynomials are 
becoming quite large-the middle coefficients in (1 + 77)144 are of the order of 

Another interesting property of the polynomials f(7, 4 2 )  is that the functions H2, g1 

and ( ~ 2 ,  whose definitions involve square roots, are rational functions of 7 with T as 
denominator. Also A(7)  is a rational function of ( l + ~ ) l ' ~ .  Splitting A into its 
numerator and denominator, 

l4 = wx2,  (1 1.19) 
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we have the following remarkable identity: 

f = &&. (11.20) 

Thus the zeros of f are either zeros or poles of A, as already noted in § 4. The functions, 
H4, Hz,  (T~, (TZ, XI and Xz, are tabulated in the appendix for 6 = 1, 2, 3.  Several more 
symmetries are evident in these formulae. 

To complete the calculation of the full metric and Ernst potentials, once f ,  H4, Hz,  
(T~,  ( T ~  and A are known, is much more straightforward. (11.2) shows the form of the 
solution of the K equation. The labour is comparable if the F equation is used. The 
form of the general solution is: 

F = (1 - v2)-’(polynomial in v of degree 26) 

+ (1  - v2)-*(1 + vv2)1’2(polynomial in v of degree 26 - 1).  (11.21) 

Recall that F1 and F3 are even in v, Fz is odd in v. 

transcendental solutions even when h # 0. They occur not for 6 an integer but for 
It is of considerable mathematical interest to note that there are series of non- 

( a 2 +  2h)”’ = integer and (6’- 2h)”* = integer. (1  1.22) 

We shall not discuss these solutions here but will be content with presenting the solution 
of the f equation explicitly for the two simplest cases. Let e4 = *l and define f? = v8*r 
where r is defined by (10.3) and H4 satisfies (3.14). Then 

aZ=1-2E4h j T = p z 7 7 a ( S . h ) -  977 2 P ( 6 . h )  7 (11.23) 

(11.24) 

where a(& h )  and p(6, h )  are the two roots of the quadratic, 

x 2 - S 2 ~  + h Z  = 0. 

These obviously reduce to the formulae (A.l)  and (A.2) of the appendix when h = 0. 
Likewise, the K and F equations may also be solved with elementary functions. In 
addition, the Ricatti equation (5.15) for p ( 7 )  may be solved with elementary functions. 
However, the final formulae for the metric and Ernst potentials are much less compact 
than the corresponding formulae for h = 0. 

12. Conciusions 

The three-parameter family of solutions of Einstein’s equations described in the 
preceding pages is exceedingly complicated when 6 is not an integer. The metric 
coefficients and Ernst potentials are constructed from two functions, H4(7) and 
K‘”( v, v) ,  satisfying second-order ordinary differential equations in independent vari- 
ables 7 and v, respectively. The K equation is a linear Fuchsian equation and involves 
H4(77) and some closely related functions of 7 as constant parameters. A knowledge of 
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the function H 4 ( v )  alone is sufficient to construct all the metric coefficients on the 
equatorial plane and the metric coefficient e*' everywhere. On the infinite red-shift 
surfaces, 77 = qo, etc, the functions, K'"(v, vo), etc, are familiar transcendental func- 
tions of v, depending in a simple way on Lam6 functions. On the symmetry axis, the 
metric coefficients and Ernst potentials take very simple functional forms. 

It was found necessary to set up some mathematical preliminaries in order to prove 
that the Ernst potential given in 9 4 actually represents an asymptotically flat vacuum 
gravitational field, With the aid of the set of six identities (4.8)-(4.10) and (5.9)-(5.1 l), 
it was then a straightforward process of substitution to show that Einstein's and Ernst's 
equations and also Tomimatsu-Sat0 'rule (a)' were satisfied. Using the same set of 
identities, we formulated the F equation in spheroidal coordinates and used the two 
cases to show that the metrics were asymptotically flat and well behaved on the 
symmetry axis. The series solutions developed (or briefly mentioned if straightforward) 
in 9 10 for the two transcendental (8 # integer) functions, H4 and K ,  converge rapidly 
everywhere outside the singular surface x = 1 except near this surface. In § 11, efficient 
algorithms for constructing the rational Tomimatsu-Sat0 series of solutions (8 = 
integer) were outlined. 

A larger class of solutions (six non-trivial parameters) has been shown to arise by 
introducing a new parameter h into the differential equations and by relaxing the 
boundary conditions. When h # 0, a third differential equation was found necessary to 
construct the full metric. These additional solutions are not astrophysically meaningful. 

In a future paper (Cosgrove 1977d), I shall show how the present six-parameter 
family and another new family of solutions may be derived as a 'simple' solution of a 
new and rather unusual formulation of the stationary axisymmetric vacuum field 
equations. This may be compared with Ernst (1968) showing that the Kerr solution 
takes an extremely simple form in his complex potential formalism. However, this 
method of derivation is not the method by which these solutions were discovered and is 
less powerful and elegant than this latter method. These solutions arose from the 
discovery of a new transformation group which constructs new solutions from old whilst 
preserving the boundary conditions appropriate to a finite rotating body in empty space. 
The transformation, unfortunately, does not give rotation to the static Weyl metrics but 
merely permutes these metrics among themselves. The solutions of this paper are the 
invariants of the transformation. The derivation of both the group and the invariant 
solutions will be given in Cosgrove (1977e). Future research should reveal more 
transformation groups (even, perhaps, a systematic theory of them) and therefore more 
asymptotically flat solutions which will, without doubt, assume extremely complicated 
functional forms. The most attractive feature of this theory, apart from its apparent 
power, is that the astrophysical boundary conditions can be incorporated at an early 
stage in attempts to construct new solutions. Most of the many and varied mathematical 
techniques used in solving Einstein's equations in recent times, e.g. algebraic speciality, 
have very little or no control over the boundary conditions. 
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Appendix. Table of F(Q, 4') for 6 = 1, 2, 3, 4, 5 and H*(q) ,  H*(q), a ~ ( q ) ,  az(q), 
Mq), KI(v, q) and Kz(v, Q )  for 6 = 1,2,3 
If S is an integer, f(7, q 2 )  = p 2 s q 6 z T  is a polynomial in 7) of degree S2 and a homogene- 
ous polynomial in p 2  and q2 of degree S. It is very closely related to the metric 
coefficient e2' (see (4.5)or (6.10)). For values of S not too large, these polynomials may 
be calculated relatively easily by the methods of § 11. The first five are: 

- 2  S = l :  r = p  7 7 - q 2 ;  

6 = 2 :  T = + 6 v 2  +477)+q4; 

6 = 3 :  

f =p6779-p4q2(9778+36777+84776+90$+ 3 6 ~ ~ )  

+p2q4(3677' + 9 0 ~ ~ + 8 4 7 7 ~  +36v2 +977)-q6; ('4.3) 

S = 4 :  
f = p87716-p6q2(167715 + 1 2 0 ~ ' ~  + j607713 + 14207 l 2  + 196877 + 140077 lo + 4 0 0 ~ ~ )  

+ ~ ~ q ~ ( 4 0 0 7 7 ~ *  + 240077" +6608q1'+ 1 1 0 4 0 ~ ~ +  1 2 8 7 0 ~ ~  

+ 11040777 + 6 6 0 8 ~ ~ +  2 4 0 0 ~ ~  +400774)-p2q6(400777 + 1 4 0 0 ~ ~  

+ 1968v5+ 1 4 2 0 ~ ~ + 5 6 0 q ~ +  120q2+ 1677) + q 8 ;  ('4.4) 

S = 5 :  

f = ~ " 7 7 ~ ~  - ~ ' q ~ ( 2 5 7 7 ~ ~ +  3 0 0 ~ ~ ~  + 2 3 0 0 ~ ~ ~  + 10150721 + 2 6 8 8 0 ~ ~ ~ + 4 3 4 0 0 7 7 ' ~  

+ 4180077"+ 220507717 +49007716)+p6q4(25007721 + 2625077" 

+ 1337007719 143890077 18+  1 0 5 9 5 2 5 ~ ' ~  + 200745077 l6 

+ 302376077 l 5  + 35532007714+ 31j84007713 + 20419007712 

+ 90420077 

+904200~ '4+2041900~ '3+3158400~ '2+3553200~11 +302376Oq'' 

+ 2 0 0 7 4 5 0 ~ ~  + 1059525$+ 4 3 8 9 0 0 ~ ~  + 1 3 3 7 0 0 ~ ~  + 2 6 2 5 0 ~ ~  

+ 2500774)+p2q8(4900779 + 2205077'+ 4180077'+ 4 3 4 0 0 ~ ~  

+ 24500077 l o +  3 0 6 2 5 ~ ~ )  -p4q6(306257 1 6 +  24500077 l 5  

+ 2 6 8 8 0 ~ ~  + 10150q4+ 2 3 0 0 ~ ~  + 3 0 0 ~ ~  + 2577)-q1'. ( ' 4 . 5 )  

The functions H4, H2,  v1 and a2 are derived from r by (10.3), (3.3), (3.4) and (3.5), 
respectively. H I  need not be tabulated since H I  = 4 7 7 ~ 1 ~ 2 .  For S = 1, 

fH4 = q, 

fH2 = pq( l+  T ) ,  

T a l =  p ,  

fa, = q. 

For S = 2, 

fH4 = 4 7 7 [ ~ ~ 7 7 ~ - q ~ ] ,  ('4.10) 
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TH2=2pq(l+77)1P2(773+3772)-q2(377+1)1, (A.l l )  

TC71 = 2p[p2773+q2(377 +2)], (A.12) 

TCQ= 2q[p2(2773+3q2)+q2]. (A.13) 

For 6 = 3, 

TH4 = 977[p4778Ap2q2(16775 + 30q4+ 1 6 ~ ~ ) + q ~ ] ,  

TH2 = 3pq(l+ 77)[p4(v8 + 877’ + 1O$)-p2q2(18$ + 5677’ + 7 0 ~ ~  + 56v3 + 1877’) 

(A.14) 

+q4(10772+877+l)], (A.15) 

fa1 = 5277’+ 60q4+ 24773)+q4(10772 + 1277 + 3)], (A.16) 

Tu2 = 3q [p4(377 + 1277’ + 1077 ‘) + p2q2(2477’ + 60q4 + 52v3 + 1877’) + q4]. (A. 17) 

The function A ( q )  is a rational function of ( 1 + ~ ) ~ / ’  for S an integer. We shall 
tabulate the numerator Zl and denominator Z2 for S = 1, 2, 3. They obey 

The real zeros (77 > -1) of El and Z2 represent the infinite red-shift surfaces but only 
those represented by the zeros of Z1 carry the ring singularity on the equatorial plane. 

For S = 1, 

Z1 = p(1+ q y 2  + 1, (A.19) 

Z2 = p ( l +  7 p -  1. (A.20) 

For S = 2, 

E1 = p 2 ( q 2 +  277)-q2+ 2p77(1+ 7 p 2 ,  

xz = p’(77’ + 277)- q 2  - 2p77 (1 + 77)l”. 

(A.21) 

(A.22) 

For S = 3, 

Z1= p( l  + 7 7 ) ‘ / ’ [ ~ ~ ( 7 7 ~  + 4 ~ ~ ) -  q2(6q2 + 477 + l)] +p2(3v4 + 4 ~ ~ ) -  q 2 ,  

E 2  = p(1 + 77)1’2[p2(774 +4q3)- ~’(677’ +477 + I)] -p2(3q4 + 4v3)+ 4’. 

(A.23) 

(A.24) 

The functions, Kl(v ,  77)and K2(v, T ) ,  both take the form (11.2). The coefficients of 
the polynomials in v are rational functions of (1 + 17)’’’ with Z1 and Z2, respectively, as 
common denominator. For S = 1, 
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For S = 3, 

K~ =z;'(I- V2)-3/2[[(1+77)1/2{-p(6772+477 

+eiqv[3- ( ~ ~ + 4 7 7 ~  + 6 q 2 ) v 2 ]  +(1 + ~ ) ~ ( p  - e i q ~ ) ~ }  

+ (1 + 77V2)1/2{p2(3774+4773)- q 2 -  12e ipq~(1+  77)'~ 

+[P2774-q2(4q +3)iV2in, 
K2=eiCi1(1- ~~)-~ /~[ (1+77)~/~{-p(677*+477 +1-3q4v2)  

+ e i q ~ [ 3 - ( q ~ + 4 7 7 ~ + 6 q ~ ) ~ ~ ] + ( 1 + 7 7 ) ~ ( p - ~ i q v ) ~ }  

- (1 + 77 v2)ll2{ ~ ~ ( 3 7 7 ~  + 477 3, - 4 - 1 2 ~  ipq77 (1 + 77)2 v 

+[~*77~-4~(477  +3)iv2m 

(A.29) 

(A.30) 
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